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Preface

This book is based on courses at Penn State University. It contains typically enough
material for about thirty six hours of presentations and nine to twelve hours of problem
solving and tutorials. All the exercises have been used at least once for homework or the
basis of examination questions.

One word of warning. This is a subject which demands proofs, and it would be wise
to also have some facility with constructing simple proofs in good English. If one wishes
to understand the reasons for a particular phenomenon this can often only be seen by
understanding why the proof works.

The ultimate aim of the course is to attempt the factorization of rather large num-
bers, for example with 65 or more decimal digits. Thus it is essential the student
has some facility in writing computer programs, and should have available a program-
ming language that facilitates multiple precision calculations, such as Pari-gp https:

//pari.math.u-bordeaux.fr/

vii
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Chapter 1

Background

1.1 Introduction

We are concerned with the basic theory and practice of the factorization of integers
into primes. This combines the development and understanding of some quite deep
mathematics with the creation of detailed computer programs.

It is essential that the reader should have some familiarity with the concept of math-
ematical proof. Factorization algorithms and primality tests give absolute proof for their
assertions, and have to take account of all possibilities. Nevertheless a proof can be very
easy. For example the statement

105 = 3.5.7

is a one-line proof of the factorization of 105.
A slightly longer example is the statement that 101 = d.q + r with

d = 2, q = 50, r = 1

d = 3, q = 33, r = 2

d = 5, q = 20, r = 1

d = 7, q = 14, r = 3

which gives a proof that 101 is prime.
How about a not very big number like

100006561?

Is this prime, and if not what are its factors? Anybody care to try it by hand?
And how about somewhat bigger numbers

11111111111111111 17 digits,

1111111111111111111 19 digits.

One of them is prime, the other composite.

1



2 CHAPTER 1. BACKGROUND

If you want to experiment I suggest using the package PARI which runs on most
computer systems and is available at

https://pari.math.u-bordeaux.fr/

Here is an example where a bit of theory is useful. There is a theorem of Fermat
which says that if p is prime, then 2p−1 leaves the remainder 1 on division by p. Now
21000 leaves the remainder 562 on division by 1001, so 1001 has to be composite. Checking
21000 might seem difficult but it is actually quite easy.

1000 = 23 + 25 + 26 + 27 + 28 + 29, 21000 = 22
3

22
5

22
6

22
7

22
8

22
9

and the 22
k
can be computed by successive squaring, so

22
3

= 256, 22
4

= 2562 ≡ 471, and so on.

Thus any program which can perform double precision multliplication can compute 2p−1

modulo p in linear time.
This is a proofs based course. One is often asked why one needs formal proofs.There

is an instructive example due to J. E. Littlewood in 1912. Let π(x) denote the number
of prime numbers not exceeding x. Gauss had suggested that∫ x

0

dt

log t

should be a good approximation to π(x)

π(x) ∼ li(x).

For all values of x for which π(x) has been calculated it has been found that

π(x) < li(x).

Here is a table of values which illustrates this for various values of x out to 1027.

https://pari.math.u-bordeaux.fr/
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x π(x) li(x) li(x)− π(x)
2 1 1.04 0.04
10 4 5.12 1.12
102 25 29.08 4.08
103 168 176.56 8.56
104 1229 1245.09 16.09
105 9592 9628.76 36.76
106 78498 78626.50 128.50
107 664579 664917.36 338.36
108 5761455 5762208.33 753.33
109 50847534 50849233.90 1699.90
1010 455052511 455055613.54 3102.54
1011 4118054813 4118066399.58 11586.58
1012 37607912018 37607950279.76 38261.76
1013 346065536839 346065645809.01 108970.01
1014 3204941750802 3204942065690.91 314888.91
1015 29844570422669 29844571475286.54 1052617.54
1016 279238341033925 279238344248555.75 3214630.75
1017 2623557157654233 2623557165610820.07 7956587.07
1018 24739954287740860 24739954309690413.98 21949553.98
1019 234057667276344607 234057667376222382.22 99877775.22
1020 2220819602560918840 2220819602783663483.55 222744643.55
1021 21127269486018731928 21127269486616126182.33 597394254.33
1022 201467286689315906290 201467286691248261498.15 1932355208.15
1023 1925320391606803968923 7250186216.00
1024 18435599767349200867866 17146907278.00
1025 176846309399143769411680 55160980939.00
1026 1699246750872437141327603 155891678121.00
1027 16352460426841680446427399 508666658006.00

So is
π(x) < li(x)

always true?
No! Littlewood in 1914 showed that there are infinitely many values of x for which

π(x) > li(x)!

We now believe that the first sign change occurs when

x ≈ 1.387162× 10316 (1.1)

well beyond what can be calculated directly. For many years it was only known that the
first sign change in π(x)− li(x) occurs for some x satisfying

x < 1010
10964

.



4 CHAPTER 1. BACKGROUND

The number on the right was computed by Skewes. G. H. Hardy once wrote that this is
probably the largest number which has ever had any practical (my emphasis) value! But
still even now the only way of establishing this is by a proper mathematical proof.

Let me turn back to that table, as it illustrates something else very interesting. So is
it really true that for any θ > 1

2
and all large x we have

|π(x)− li(x)| < xθ?

This is the famous Riemann Hypothesis, the most important unsolved problem in math-
ematics. There is a million dollar prize for a proof, or a disproof. And probably an
automatic professorship at the most prestigious universities for anyone who wins it. By
the way, one might wonder if there is something random in the distribution of the primes.
This is how random phenomena are supposed to behave.

1.2 The integers

Number theory in its most basic form is the study of the set of integers

Z = {0,±1,±2, . . .}

and its important subset
N = {1, 2, 3, . . .},

the set of positive integers, sometimes called the natural numbers. The usual rules of
arithmetic apply, and can be deduced from a set of axioms. If you multiply any two
members of Z you get another one. Likewise for N. If you subtract one member of Z
from another, e.g.

173− 192 = −19

you get a third. But this last fails for N. You can do other standard things in Z, such as

x(y + z) = xy + xz

and
xy = yx

is always true.

1.3 Divisibility

To understand factorization we need some concept of divisibility so we start with some
definitions. Given two integers a and b we say that a divides b when there is a third
integer c such that ac = b and we write a|b.

Example 1.1. If a|b and b|c, then a|c.
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Proof. There are d and e so that b = ad and c = be. Hence a(de) = (ad)e = be = c and
de is an integer.

Here are some consequences which are useful. For any a we have 0a = 0, and if ab = 1,
then a = ±1 and b = ±1 (with the same sign in each case). Also if a ̸= 0 and ac = ad,
then c = d.

Now we can introduce the concept of a prime number

Definition 1.1. A member of N greater than 1 which is only divisible by 1 and itself is
called a prime number.

We will normally use the letter p to denote a prime number.

Example 1.2. 101 is a prime number.

Proof. How to prove this? One has to check for divisors d with 1 < d < 100. Moreover if
d is a divisor, then there is an e so that de = 101, and one of d, e is ≤

√
101 so we only

need to check out to 10. Then we only need to check the primes 2, 3, 5, 7. Obviously 2
and 5 are not divisors and 3 is easily checked, so only 7 needs any work, and this leaves
remainder 3, not 0.

Since we are dealing with proofs for facts about N there is one proof method which
is very important. This is the principle of induction. It is actually embedded into the
definition of N. That is, we have 1 ∈ N and 1 is the least member of N, and given any
n ∈ N the next member is n+ 1. In this way one sees that N is itself defined inductively.
Without the following fundamental theorem we could pack up and go home.

Theorem 1.1. Every member of N is a product of prime numbers.

Proof. 1 is an “empty product” of primes, so the case n = 1 holds. Suppose that we have
proved the result for every m with m ≤ n. If n+1 is prime we are done. Suppose n+1 is
not prime. Then there is an a with a|n+1 and 1 < a < n+1. Then also 1 < n+1

a
< n+1.

But then on the inductive hypothesis both a and n+1
a

are products of primes.

We can use this to deduce

Theorem 1.2 (Euclid). There are infinitely many primes.

Proof. We argue by contradiction. Suppose there are only a finite number of primes. Call
them p1, p2, . . . , pn and consider the number

m = p1p2 . . . pn + 1.

Since we already know some primes it is clear that m > 1. Hence it is a product of
primes, and in particular there is a prime p which divides m. But p is one of the primes
p1, p2, . . . , pn so p|m − p1p2 . . . pn = 1. But 1 is not divisible by any prime. So our
assumption must have been false.
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Hardy cites this proof as an example of beauty in mathematics.
There is a different proof of the infinitude of primes which is essentially due to Euler,

and is analytic in nature and quite different from Euclid’s. It tells us more about the
distribution of primes and is the beginning of the modern approach. Let

S(x) =
∑
n≤x

1

n
.

Then

S(x) ≥
∑
n≤x

∫ n+1

n

dt

t
≥
∫ x

1

dt

t
= log x.

Now consider
P (x) =

∏
p≤x

(1− 1/p)−1

where the product is over the primes not exceeding x. Then

P (x) =
∏
p≤x

(
1 +

1

p
+

1

p2
+ · · ·

)
≥
∑
n≤x

1

n
≥ log x.

Note that when one multiplies out the left hand side every fraction 1
n
with n ≤ x occurs.

Since log x → ∞ as x → ∞, there have to be infinitely many primes. Euler’s result on
primes is often quoted as follows.

Theorem 1.3 (Euler). The sum ∑
p

1

p

diverges.

Actually one can get something a bit more precise. Take logs on both sides. Thus

−
∑
p≤x

log(1− 1/p) ≥ log log x.

Moreover the expression on the left is

−
∑
p≤x

log(1− 1/p) =
∑
p≤x

∞∑
k=1

1

kpk
.

Here the terms with k ≥ 2 contribute at most∑
p≤x

1

2

∞∑
k=2

1

pk
≤ 1

2

∞∑
n=2

1

n(n− 1)
=

1

2
.

Hence we have just proved that ∑
p≤x

1

p
≥ log log x− 1

2
.
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1.3.1 Exercises

Divisibility and Factorisation

1. Let a, b, c ∈ Z. Prove each of the following.

(i) a|a.
(ii) If a|b and b|a, then a = ±b.
(iii) If a|b and b|c, then a|c.
(iv) If ac|bc and c ̸= 0, then a|b.
(v) If a|b, then ac|bc.
(vi) If a|b and a|c, then a|bx+ cy for all x, y ∈ Z.

2. The Fibonacci sequence (1202) is defined iteratively by F1 = F2 = 1, Fn+1 = Fn+Fn−1

(n = 2, 3, . . .). Show that if m, n ∈ N satisfy m|Fn and m|Fn+1, then m = 1.

3. Prove that if n is odd, then 8|n2 − 1.

4. (i) Show that if m and n are integers of the form 4k + 1, then so is mn.

(ii) Show that if m,n ∈ N, and mn is of the form 4k − 1, then so is one of m and n.

(iii) Show that every number of the form 4k − 1 has a prime factor of this form.

(iv) Show that there are infinitely many primes of the form 4k − 1.

5. (i) Show that if m and n are integers of the form 6k + 1, then so is mn.

(ii) Show that if m,n ∈ N, and mn is of the form 6k − 1, then so is one of m and n.

(iii) Show that every number of the form 6k − 1 has a prime factor of this form.

(iv) Show that there are infinitely many primes of the form 6k − 1.

6. Show that if p is a prime number and 1 ≤ j ≤ p − 1, then p divides the binomial
coefficient

(
p
j

)
.

7. Show that n|(n− 1)! for all composite n > 4.

8. Prove that if 2m + 1 is an odd prime, then there is an n ∈ N such that m = 2n. These
are the Fermat primes. Fermat thought that all numbers of the form 22

n
+ 1 are prime.

Show that 641|225 + 1.

9. Prove that if n is a natural number and α is a real number, then

n−1∑
k=0

⌊
α +

k

n

⌋
= ⌊nα⌋.

10. Let n ∈ N and p be a prime number, show that the largest t such that pt|n satisfies

t =
∞∑
h=1

⌊
n

ph

⌋
.



8 CHAPTER 1. BACKGROUND

1.4 The fundamental theorem of arithmetic

We now come to something very important

Theorem 1.4 (The division algorithm). Suppose that a ∈ Z and d ∈ N. Then there are
unique q, r ∈ Z such that a = dq + r, 0 ≤ r < d.

We call q the quotient and r the remainder.

Proof. Let D = {a−dx : x ∈ Z}. If a ≥ 0, then a ∈ D, and if a < 0, then a−d(a−1) > 0.
Hence D has non-negative elements, so has a least non-negative element r. Let q = x.
Then a = dq + r, 0 ≤ r. Moreover if r ≥ d, then a = d(q + 1) + (r − d) gives another
solution, but with 0 ≤ r − d < r contradicting the minimality of r.

For uniqueness note that a second solution a = dq′ + r′, 0 ≤ r′ < d gives 0 = a− a =
(dq′ + r′)− (dq + r) = d(q′ − q) + (r′ − r), and if q′ ̸= q, then d ≤ d|q′ − q| = |r′ − r| < d
which is impossible. So q′ = q and r′ = r.

It is exactly this which one uses when one performs long division

Example 1.3. Try dividing 17 into 192837465 by the method you were taught at primary
school.

We will make frequent use of the division algorithm

Theorem 1.5. Given two integers a and b, not both 0, define

D(a, b) = {ax+ by : x ∈ Z, y ∈ Z}.

Then D(a, b) has positive elements. Let (a, b) denote the least positive element. Then
(a, b) has the properties

(i) (a, b)|a,
(ii) (a, b)|b,
(iii) if the integer c satisfies c|a and c|b, then c|(a, b).

Definition 1.2. The number (a, b) is called the greatest common divisor of a and b.
The symbol (a, b) has many uses in mathematics, so to be clear one sometimes writes
GCD(a, b).

Proof. If a is positive, then so is a.1 + b.0. Likewise if b is positive. If a is negative,
then a(−1) + b.0 is positive, and again likewise if b is negative. The only remaining
case is a = b = 0 which is expressly excluded. Thus D(a, b) does indeed have positive
elements. Thus (a, b) exists. Suppose (i) is false. By the division algorithm we have
a = (a, b)q + r with 0 ≤ r < (a, b). But the falsity of (i) means that 0 < r. Thus
r = a− (a, b)q = a− (ax+ by)q for some integers x and y. Hence r = a(1−xq)+ b(−yq).
Since 0 < r < (a, b) this contradicts the minimality of (a, b).

Likewise for (ii). Now suppose c|a and c|b, so that a = cu and b = cv for some integers
u and v. Then

(a, b) = ax+ by = cux+ cvy = c(ux+ vy)

so (iii) holds.
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The GCD has some interesting properties. Here is one

Example 1.4. We have
(

a
(a,b)

, b
(a,b)

)
= 1.

To see this observe that if d =
(

a
(a,b)

, b
(a,b)

)
, then d| a

(a,b)
and d| b

(a,b)
, and hence d(a, b)|a

and d(a, b)|b. But then d(a, b)|(a, b) and so d|1, whence d = 1.

Here is another

Example 1.5. Suppose that a and b are not both 0. Then for any integer x we have
(a + bx, b) = (a, b). Here is a proof. First of all (a, b)|a and (a, b)|b, so (a, b)|a + bx.
Hence (a, b)|(a + bx, b). On the other hand (a + bx, b)|a + bx and (a + bx, b)|b so that
(a+ bx)|a+ bx− bx = a. Hence (a+ bx, b)|(a, b)|(a+ bx, b) and so (a, b) = (a+ bx, b).

Here is yet another

Example 1.6. Suppose that (a, b) = 1 and ax = by. Then there is a z such that x = bz,
y = az. It suffices to show that b|x, for then the conclusion follows on taking z = x/b.
To see this observe that there are u and v so that au + bv = (a, b) = 1. Hence x =
aux+ bvx = byu+ bvx = b(yu+ vx) and so b|x.

Following from the previous theorem we immediately have the following

Corollary 1.6. Suppose that a and b are integers not both 0. Then there are integers x
and y such that

(a, b) = ax+ by.

Later we will look at a way of finding suitable x and y in examples. As it stands the
theorem gives no constructive way of finding them. It is a pure existence proof. As a
first application we establish

Theorem 1.7 (Euclid). Suppose that p is a prime number, and a and b are integers such
that p|ab. Then either p|a or p|b.

You might think this is obvious, but look at the following

Example 1.7. Consider the set A of integers of the form 4k + 1. If you multiply two of
them together, e.g. (4k1 + 1)(4k2 + 1) = 16k1k2 + 4k2 + 4k1 + 1 = 4(4k1k2 + k1 + k2) + 1
you get another integer of the same kind. We define a “prime” p in this system if it is
only divisible by 1 and itself in the system. Here is a list of “primes” in A.

5, 9, 13, 17, 21, 29, 33, 37, 41, 49 . . .

9 is one because 3 is not in the system. Likewise 21 and 49 because 3 and 7 are not in
the system. Also the “prime” factorisation of 45 is 5× 9. Now look at 441. We have

441 = 9× 49 = 212.

Wait a minute, here factorisation is not unique! The theorem is false in A because
21|9× 49 but 21 does not divide 9 or 49!
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What is the difference between Z and A? Well Z has an additive structure and A
does not. Add two members of Z and you get another one. Add two members of A
and you get a number which leaves the remainder 2 on division by 4, so is not in A.
Amazingly we have to use the additive structure to get something fundamental about
the multiplicative structure. This is of huge significance and underpins some of the most
fundamental questions in mathematics.

Euclid’s theorem. If a or b are 0, then clearly p|a or p|b. Thus we may assume ab ̸= 0.
Suppose that p ∤ a. We know from the previous theorem that there are x and y so that
(a, p) = ax + py and that (a, p)|p and (a, p)|a. Since p is prime we must have (a, p) = 1
or p. But we are supposing that p ∤ a so (a, p) ̸= p, i.e. (a, p) = 1. Hence 1 = ax + py.
But then b = abx+ pby and since p|ab we have p|b as required.

We can use Euclid’s theorem to establish the following

Theorem 1.8. Suppose that p, p1, p2, . . . , pr are prime numbers and

p|p1p2 . . . pr.

Then p = pj for some j.

Proof. The case r = 1 is immediate from the definition of prime. Suppose we have
established the r-th case and that we have p|p1p2 . . . pr+1. Then by the previous theorem
we have p|pr+1 or p|p1p2 . . . pr. In the first case we must have p = pr+1. In the second by
the inductive hypothesis we must have p = pj for some j with 1 ≤ j ≤ r.

We can now establish the main result of this section.

Theorem 1.9 (The Fundamental Theorem of Arithmetic). Factorization into primes is
unique apart from the order of the factors. More precisely if a is a non-zero integer and
a ̸= ±1, then

a = (±1)p1p2 . . . pr

for some r ≥ 1 and prime numbers p1, . . . , pr, and r and the choice of sign is unique and
the primes pj are unique apart from their ordering.

Proof. Clearly we may suppose that a > 0 and hence a ≥ 2. Theorem 1.1 tells us that
a will be a product of r primes, say a = p1p2 . . . pr with r ≥ 1. It remains to prove
uniqueness. We prove that by induction on r. Suppose r = 1 and it is another product
of primes a = p′1 . . . p

′
s where s ≥ 1. Then p′1|p1 and so p′1 = p1 and p′2 . . . p

′
s = 1, whence

s = 1 also. Now suppose that r ≥ 1 and we have established uniqueness for all products
of r primes, and we have a product of r + 1 primes, and

a = p1p2 . . . pr+1 = p′1 . . . p
′
s.

Then we see from the previous theorem that p′1 = pj for some j and then

p′2 . . . p
′
s = p1p2 . . . pr+1/pj

and we can apply the inductive hypothesis to obtain the desired conclusion.
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There are various other properties of GCDs which can now be described.
Suppose a and b are positive integers. Then by the previous theorem we can write

a = pr11 . . . p
rk
k , b = ps11 . . . pskk

where the p1, . . . pk are the different primes in the factorization of a and b and we allow
the possibility that the exponents rj and sj may be zero. Then it can be checked easily
that

(a, b) = p
min(r1,s1)
1 . . . p

min(rk,sk)
k

and this could be taken as the definition of GCD. We can now introduce the idea of the
least common multiple

Definition 1.3. The least common multiple LCM

[a, b] =
ab

(a, b)

of a and b is defined by
[a, b] = p

max(r1,s1)
1 . . . p

max(rk,sk)
k .

Then LCM [a, b] has the property that it is the smallest positive integer c so that a|c
and b|c.

At this point it is useful to remind ourselves of some further terminology

Definition 1.4. A composite number is a number n ∈ N with n > 1 which is not prime.
In particular a compositie number n can be written

n = m1m2

with 1 < m1 < n, and so 1 < m2 < n also.

1.4.1 Exercises

1. Suppose that l,m, n ∈ N. Prove that (lm, ln) = l(m,n).

2. The squarefree numbers are the natural numbers which have no repeated prime factors,
e.g 6, 105. Note that 1 is the only natural number which is both squarefree and a perfect
square. Prove that every n ∈ N can be written uniquely as the product of a perfect
square and a squarefree number.

3. Let a, b, c ∈ Z with a and b not both zero. Prove each of the following.
(i) If (a, b) = 1 and a|bc, then a|c.
(ii)

(
a

(a,b)
, b
(a,b)

)
= 1.

(iii) (a, b) = (a+ cb, b).

4. Show that if (a, b) = 1, then (a− b, a+ b) = 1 or 2. Exactly when is the value 2?
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5. Show that if ad− bc = ±1, then (a+ b, c+ d) = 1.

6. Suppose that a, b ∈ N. Prove that (a, b)[a, b] = ab.

7. Let a ∈ N and b ∈ Z. Prove that the equations (x, y) = a and xy = b can be solved
simultaneously in integers x and y if and only if a2|b.

8. Prove that if m ∈ N and n ∈ N, then there are integers a, b such that (a, b) = m and
[a, b] = n if and only if m|n.

9. Let a, b, c, d ∈ Z with ab and cd not both 0. Prove that

(ab, cd) = (a, c)(b, d)

(
a

(a, c)
,

d

(b, d)

)(
c

(a, c)
,

b

(b, d)

)
.

10. Prove that there are no positive integers a, b, n with n > 1 such that

(an − bn)|(an + bn).

11. Suppose that n1, n2, . . . , ns ∈ Z are not all 0.

(i) Define GCD(n1, n2, . . . , ns) and prove that there exist integers x1, x2, . . . , xs such
that n1x1 + n2x2 + · · ·+ nsxs =GCD(n1, n2, . . . , ns).

(ii) Prove that for every j we have GCD(n1, . . . , ns)|nj and that if d|nj for every j,
then d|GCD(n1, . . . nj).

1.5 Trial Division

As I hope was clear from the example 101 the simplest way to try to factorize a number
n is by trial division. If n has a proper factor m1, so that n = m1m2 with 1 < m1 < n,
whence 1 < m2 < n also, then we can suppose that m1 ≤ m2. Hence m2

1 ≤ m1m2 = n
and

m1 ≤
√
n.

Thus we can try each m1 ≤
√
n in turn. If we find no such factor, then we can deduce

that n is prime.

Since the smallest proper divisor of n has to be the smallest prime factor of n we need
only check the primes p with

2 ≤ p ≤
√
n.

Even so, for large n this is hugely expensive in time. The number π(x) of primes p ≤ x
is approximately

π(x) ∼
∫ x

2

dα

logα
∼ x

log x
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where log denotes the natural logarithm. Thus if n is about k bits in size and turns out
to be prime or the product of two primes of about the same size, then the number of
operations will be

≈ 2k/2

k
2
log 2

.

Still exponential in the bit size.

Trial division is feasible for n out to about 40 bits on a modern PC. Much beyond
that it becomes hopeless.

One area where trial division, or sophisticated variants thereof, are useful is in the
production of tables of primes, or counts of primes such as the value of π(x). This is how
the table I showed you earlier with gives values of π(x) for x ≤ 1027 was constructed. The
simplest form of this is the ‘Sieve of Eratosthenes’. Construct a ⌊

√
N⌋ × ⌊

√
N⌋ array.

Here N = 100.

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Forget about 0 and 1, and then for each successive element remaining remove the proper
multiples. Thus for 2 we remove 4, 6, 8, . . . , 98.

X X 2 3 X 5 X 7 X 9
X 11 X 13 X 15 X 17 X 19
X 21 X 23 X 25 X 27 X 29
X 31 X 33 X 35 X 37 X 39
X 41 X 43 X 45 X 47 X 49
X 51 X 53 X 55 X 57 X 59
X 61 X 63 X 65 X 67 X 69
X 71 X 73 X 75 X 77 X 79
X 81 X 83 X 85 X 87 X 89
X 91 X 93 X 95 X 97 X 99

Then for the next remaining element 3 remove 6, 9, . . . , 99.



14 CHAPTER 1. BACKGROUND

X X 2 3 X 5 X 7 X X
X 11 X 13 X X X 17 X 19
X X X 23 X 25 X X X 29
X 31 X X X 35 X 37 X X
X 41 X 43 X X X 47 X 49
X X X 53 X 55 X X X 59
X 61 X X X 65 X 67 X X
X 71 X 73 X X X 77 X 79
X X X 83 X 85 X X X 89
X 91 X X X 95 X 97 X X
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Likewise for 5 and 7.

X X 2 3 X 5 X 7 X X
X 11 X 13 X X X 17 X 19
X X X 23 X X X X X 29
X 31 X X X X X 37 X X
X 41 X 43 X X X 47 X X
X X X 53 X X X X X 59
X 61 X X X X X 67 X X
X 71 X 73 X X X X X 79
X X X 83 X X X X X 89
X X X X X X X 97 X X

After that the next remaining element is 11 and for that and its successors all the proper
multiples have already been removed. Thus we now have a table of all the primes p ≤ 100.
This is relatively efficient. The sieve of Eratosthenes produces approximately

n

log n

numbers in about ∑
p≤

√
n

n

p
∼ n log log n

operations. Another big constraint is storage.
Now by counting the entries that remain one finds that

π(100) = 25,

1.5.1 Exercises

1. Use trial division to factorize 221 and 223.

1.6 Differences of Squares

Here is an idea that goes back to Fermat. Given n suppose we can find integers x and y
so that

n = x2 − y2, 0 ≤ y < x.

Since the polynomial on the right factorises as

(x− y)(x+ y)

maybe we have a way of factoring n. We are only likely to try this if n is odd, say

n = 2k + 1
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and then we might run in to

n = 2k + 1 = (k + 1)2 − k2 = 1.(2k + 1)

which does not help much. Of course if n is prime, then perforce x− y = 1 and x+ y =
2k+1 so this would be the only solution. But if we could find a solution with x− y > 1,
then that would show that n is composite and would give a factorization.

Moreover if
n = m1m2

with n odd and m1 ≤ m2, then m1 and m2 are both odd and there is a solution with

x− y = m1, x+ y = m2, x =
m2 +m1

2
, y =

m2 −m1

2
.

Example 1.8.
91 = 100− 9 = 102 − 32,

x = 10, y = 3, m1 = x− y = 7, m2 = x+ y = 13.

Example 1.9.
1001 = 2025− 1024 = 452 − 322

x = 45, y = 32, m1 = x− y = 13, m2 = x+ y = 77.

1001 = 13× 77 = 7× 11× 13.

This method has the obvious downside that x2 = n + y2 so already one is searching
among x which are greater than

√
n and one could end up searching among that many

possibilities. The chances of solving this easily for large n are quite small. Nevertheless
we will see that this is a very fruitful idea. For example suppose instead of n = x2 − y2

we could solve
x2 − y2 = kn

for a relatively small value of k such that

1 < x− y < x+ y < kn.

It is not very likely that x− y or x+ y are factors of n, but if we could compute

g = GCD(x+ y, n)

then we might find that g differs from 1 or n and so gives a factorization. Moreover there
is a very fast way of computing greatest common divisors.

Example 1.10. Let n = 10001. Then

8n = 80008 = 80089− 81 = 2832 − 92 = 274× 292.

Now
GCD(292, 10001) = 73, 10001 = 73× 137

We will come back to this, but as a first step we want to explore the computation of
greatest common divisors. We also want to find fast ways of solving equations like

kn = x2 − y2.
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1.6.1 Exercises

1. Factorise 9991.

1.7 The Floor Function

There is a function which we will use from time to time. This is the floor function. It is
defined for all real numbers.

Definition 1.5. For real numbers α we define the floor function ⌊α⌋ to be the largest
integer not exceeding α.

Occasionally it is also useful to define the ceiling function ⌈x⌉ as the smallest integer
u such that x ≤ u. The difference x− ⌊x⌋ is often called the fractional part of x and
is sometimes denoted by {x}.
Example 1.11. ⌊π⌋ = 3, ⌈π⌉ = 4, ⌊

√
2⌋ = 1, ⌊−

√
2⌋ = −2, ⌈−

√
2⌉ = −1.

The floor function has some useful properties.

Theorem 1.10 (Properties of the floor function). (i) For any x ∈ R we have 0 ≤
x− ⌊x⌋ < 1.
(ii) For any x ∈ R and k ∈ Z we have ⌊x+ k⌋ = ⌊x⌋+ k.
(iii) For any x ∈ R and any n ∈ N we have ⌊x/n⌋ = ⌊⌊x⌋/n⌋.
(iv) For any x, y ∈ R we have ⌊x⌋+ ⌊y⌋ ≤ ⌊x+ y⌋ ≤ ⌊x⌋+ ⌊y⌋+ 1.

Proof. (i) For any x ∈ R we have 0 ≤ x−⌊x⌋ < 1. This is pretty obvious. If x−⌊x⌋ < 0,
then x < ⌊x⌋ contradicting the definition. If 1 ≤ x − ⌊x⌋, then 1 + ⌊x⌋ ≤ x also
contradicting the definition. This also shows that ⌊x⌋ is unique.

(ii) For any x ∈ R and k ∈ Z we have ⌊x + k⌋ = ⌊x⌋ + k. One way to see this is to
observe that by (i) we have x = ⌊x⌋+θ for some θ with 0 ≤ θ < 1. Then x+k−⌊x⌋−k = θ
and since there is only one integer l with 0 ≤ x+ k− l < 1, and this l is ⌊x+ k⌋ we must
have ⌊x+ k⌋ = ⌊x⌋+ k.

(iii) For any x ∈ R and any n ∈ N we have ⌊x/n⌋ = ⌊⌊x⌋/n⌋. We know by (i)
that θ = x/n − ⌊x/n⌋ satisfies 0 ≤ θ < 1. Now x = n⌊x/n⌋ + nθ and so by (ii)
⌊x⌋ = n⌊x/n⌋+⌊nθ⌋. Hence ⌊x⌋/n = ⌊x/n⌋+⌊nθ⌋/n and so ⌊x/n⌋ ≤ ⌊x⌋/n < ⌊x/n⌋+1
and so ⌊x/n⌋ = ⌊⌊x⌋/n⌋.

(iv) For any x, y ∈ R we have ⌊x⌋+⌊y⌋ ≤ ⌊x+y⌋ ≤ ⌊x⌋+⌊y⌋+1. Put x = ⌊x⌋+θ and
y = ⌊y⌋+ ϕ where 0 ≤ θ, ϕ < 1. Then ⌊x+ y⌋ = ⌊θ + ϕ⌋+ ⌊x⌋+ ⌊y⌋ and 0 ≤ θ + ϕ < 2.

1.7.1 Exercises

1. Prove that if n is a natural number and α is a real number, then

n−1∑
k=0

⌊
α +

k

n

⌋
= ⌊nα⌋.
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2. Let n ∈ N and p be a prime number, show that the largest t such that pt|n satisfies

t =
∞∑
h=1

⌊
n

ph

⌋
.

1.8 Notes

§1 Littlewood’s theorem is in J. E. Littlewood, J. E. (1914). “Sur la distribution des
nombres premiers”, Comptes Rendus, 158, 1869–1872. The number (1.1) is computed in
D. Stoll, P. Demichel (2011), “The impact of ζ(s) complex zeros on π(x) for x < 1010

13
”,

Mathematics of Computation, 80 (276), 2381–2394. Skewes work is in S. Skewes (1933),
“On the difference π(x)− li(x)”, Journal of the London Mathematical Society, 8, 277–283
and S. Skewes (1955), “On the difference π(x) − li(x) (II)”, Proceedings of the London
Mathematical Society, 5, 48–70.

The seminal paper of B. Riemann (1860) stating a connection between π and the zeros
of the Riemann zeta function is “Über die Anzahl der Primzahlen unter einer gegebenen
Grösse”, Monatsberichte der Königlichen Preussichen Akademie der Wissenschaften zu
Berlin aus dem Jahre 1859, 671-680. The first proofs of the prime number theorem are by
J. Hadamard (1896), “Sur la distribution des zéros de la fonction ζ(s) et ses conséquences
arithmétiques”, Bull. Soc. Math. France 24, 199-220 and Charles-Jean Étienne Gustave
Nicolas, baron de la Vallée Poussin (1896), “Recherches analytiques sur la théorie des
nombres premiers”, I–III, Ann. Soc. Sci. Bruxelles 20, 183–256,281–362, 363–397. The
strongest form we currently know of the prime number theorem which does not assume
any unproven hypothesis is in N. M. Korobov (1958), “Weyl’s estimates of sums and
the distribution of primes”, Dokl. Akad. Nauk SSSR 123, 28–31 and “Estimates of
trigonometric sums and their applications”, Uspehi Mat. Nauk, 13(4 (82)), 185–192, and
I. M. Vinogradov (1958), “A new evaluation of ζ(1+it)”, Izv. Akad. Nauk SSSR 22, 161-
164, again independently (Vinogradov is a little hand-wavy and, presumably mistakenly,
omits the log log factor). The result is

π(x)− li(x) ≪ x exp

(
− C(log x)3/5

(log log x)1/5

)
for some positive constant C.

Fermat’s theorem is and its generalizations due to Euler is discussed in Chapter 3.

§2 The usual approach to the definition of N and Z is to assume N satisfies a version of
the Peano axioms

N1. 1 is a natural number.

N2. Every natural number has a successor which is also a natural number.

N3. 1 is not the successor of any natural number.

N4. If the successor of x equals the successor of y then x = y
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N5. Induction Axiom. If a statement S(n) is true for n = 1, and if for each n ∈ N
the truth of S(n) implies the truth for the successor of n, then the statement is true for
every n ∈ N.

There is an increasing tendency to include 0 in N and make it play the rôle of 1 in
the above axioms, and then define 1 to be the successor of 0. Perhaps the most satisfying
way of defining N is due to Von Neumann.

One can also axiomatise Z by supposing that there are two operations + and × and
an order relationship < on pairs of elements of Z such that for every a, b, c ∈ Z we have

Z1 Closure. a+ b ∈ Z, a× b ∈ Z.
Z2 Associativity. a+ (b+ c) = (a+ b) + c, a× (b× c) = (a× b)× c.
Z3 Commutativity. a+ b = b+ a, a× b = b× a.
Z4 Identities. There are elements 0 and 1 ∈ Z such that a+ 0 = a, a× 1 = a.
Z5 Inverse. Given a ∈ Z there is an element (−a) ∈ Z such that a+ (−a) = 0.
Z6 Distributivity. a× (b+ c) = (a× b) + (a× c) and (a+ b)× c = (a× c) + (b× c).
Z7 No zero divisors. If a× b = 0, then a = 0 or b = 0.
Z8 Order. Exactly one of a < b, a = b, b < a holds.
Z9 Order +. If a < b, then a+ c < b+ c.
Z10 Order ×. If a < b and 0 < c, then a× c < b× c.
By dividing the ordered pairs (m,n) ∈ N2 into equivalence classes by putting in the

same class those (m,n), (m′, n′) for which m + n′ = m′ + n one can construct Z from
N. One can then spend considerable effort deducing all the usual rules of arithmetic
from these axioms. For more details see the Wikipedia articles on Natural Numbers and
Integers.

§3 The Dirichlet box principle is usually attributed to a paper of J. P. G. L. Dirichlet
from 1834, although it does appear to have been known as early as 1624. See https:

//en.wikipedia.org/wiki/Pigeonhole_principle

§4 The division algorithm is in Euclid, Book VII, Proposition 1.
The fundamental theorem of arithmetic in special cases is buried in Euclid Book VII

and Book IX.

§5 Trial division was first described by Fibonacci in his book “Liber Abaci” of 1202.

https://en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Pigeonhole_principle
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Chapter 2

Euclid’s algorithm

2.1 Euclid’s algorithm

The question arises. We know that given integers a, b not both 0, there are integers x
and y so that

(a, b) = ax+ by. (2.1)

How do we find x and y? A method for solving this problem, known as Euclid’s algorithm,
first appeared in Euclid’s Elements more than 2000 years ago. Moreover this solution
gives a very efficient algorithm and it is still the basis for many numerical methods in
arithmetical applications. For example in factorisation routines.

We may certainly suppose that a > 0 and b > 0 since multiplying either by (−1) does
not change the (a, b) - we can replace x by −x and y by −y. We can also suppose that
b ≤ a, and in practice that b < a. For convenience of notation put r0 = b, r−1 = a. Now
apply the division algorithm iteratively as follows

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs.

That is, we stop the moment that there is a remainder equal to 0. This could be r1 if
b|a, for example, although the way it is written out above it is as if s is at least 3. The
important point is that because rj < rj−1, sooner or later we must have a zero remainder.

Euclid proved that (a, b) = rs−1. This is easy to see. First of all we know that (a, b)|a
and (a, b)|b. Thus from the first line we have (a, b)|r1. Repeating this argument we get
that successively (a, b)|rj for j = 2, 3, . . . , s−1. On the other hand, starting at the bottom
line rs−1|rs−2, rs−1|rs−3 and so on until we have rs−1|b and rs−1|a. Recall that this means

21
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that rs−1|(a, b). Thus we have just proved that

rs−1|(a, b), (a, b)|rs−1

and so rs−1 = (a, b).

Example 2.1. Let a = 10678, b = 42

10678 = 42× 254 + 10

42 = 10× 4 + 2

10 = 2× 5.

Thus (10678, 42) = 2.

But how to compute the x and y in (a, b) = ax+ by? We could just work backwards
through the algorithm using back substitution, but this is tedious and computationally
wasteful since it requires all our calculations to be stored. A simpler way is as follows.

Algorithm 2.1 (Extended Euclid Algorithm). Define r−1 = a, r0 = b, x−1 = 1,
y−1 = 0, x0 = 0, y0 = 1 and then lay the calculations out as follows.

r−1 = r0q1 + r1, x1 = x−1 − q1x0, y1 = y−1 − q1y0
r0 = r1q2 + r2, x2 = x0 − q2x1, y2 = y0 − q2y1
r1 = r2q3 + r3, x3 = x1 − q3x2, y3 = y1 − q3y2
...

...
...

rs−3 = rs−2qs−1 + rs−1, xs−1 = xs−3 − qs−1xs−2, ys−1 = ys−3 − qs−1ys−2

rs−2 = rs−1qs.

Now the claim is that we have x = xs−1, y = ys−1.

More generally we have
rj = axj + byj (2.2)

and again this can be proved by induction. First, by construction we have

r−1 = ax−1 + by−1, r0 = ax0 + by0.

Suppose we have established (2.2) for all j ≤ k. Then

rk+1 = rk−1 − qk+1rk

= (axk−1 + byk−1)− qk+1(axk + byk)

= axk+1 + byk+1.

In particular
(a, b) = rs−1 = axs−1 + bys−1.

Hence laying out the example above in this expanded form we have
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r−1 = 10678, r0 = 42, x−1 = 1, x0 = 0, y−1 = 0, y0 = 1,

10678 = 42× 254 + 10, x1 = 1− 254× 0 = 1, y1 = 0− 1× 254 = −254
42 = 10× 4 + 2, x2 = 0− 4× 1 = −4, y2 = 1− 4× (−254) = 1017
10 = 2× 5.

(10678, 42) = 2 = 10678× (−4) + 42× (1017).

It is also possible to set this up using matrices. Lay out the sequences in rows

r−1, x−1, y−1

r0, x0, y0
...

...
...

Now proceed to compute each successive row as follows. If the s-th row is the last one to
be computed, calculate qs = ⌊rs−1/rs⌋. Then take the last two rows computed and pre
multiply by (1,−qs)

(1,−qs)
(
rs−1, xs−1, ys−1

rs, xs, ys

)
= (rs+1, xs+1, ys+1)

to obtain the s+ 1-st row.

Example 2.2. Let a = 4343, b = 973. We can lay this out as follows

4343 1 0
4 973 0 1
2 451 1 −4
6 71 −2 9
2 25 13 −58
1 21 −28 125
5 4 41 −183

1 −233 1040

Thus (4343, 973) = 1 = (−233)4343 + (1040)973.

2.1.1 Exercises

1. Find integers x and y such that 182x+ 1155y = (182, 1155).

2. Find integers x and y such that 1547x+ 2197y = (1547, 2197).

3. Find integers m and n so that

4709m+ 6188n = (4709, 6188).
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4. Let {Fn : n = 0, 1, . . .} be the Fibonacci sequence defined by F0 = 1, F1 = 1,
Fn+1 = Fn + Fn−1 and let

θ =
1 +

√
5

2
= 1.6180339887498948482045868343656 . . . .

(i) Prove that

Fn =
θn − (−θ)−n√

5
.

(ii) Suppose that a and b are positive integers with b < a and we adopt the notation used
in the description of Euclid’s algorithm above. Prove that for k = 0, 1, . . . , s− 1 we have
Fk ≤ rs−1−k and

s ≤ 1 +
log 2b

√
5

log θ
.

This shows that Euclid’s algorithm runs in time at most linear in the bit size of min(a, b).

2.2 Linear Diophantine Equations

We can use Euclid’s algorithm to find the complete solution in integers to linear dio-
phantine equations of the kind

ax+ by = c.

Here a, b, c are integers and we wish to find all integers x and y which satisfy this.
There are some obvious necessary conditions. First of all if a = b = 0, then it is not
soluble unless c = 0 and then it is soluble by any x and y, which is not very interesting.
Thus it makes sense to suppose that one of a or b is non-zero. Then since (a, b) divides
the left hand side, we can only have solutions if (a, b)|c. If we choose x and y so that
ax+ by = (a, b), then we have

a(xc/(a, b)) + b(yc/(a, b)) = (ax+ by)c/(a, b) = c

so we certainly have a solution of our equation. Call it x0, y0. Now consider any other
solution. Then

ax+ by − ax0 − by0 = c− c = 0.

Thus
a(x− x0) = b(y0 − y).

Hence
a

(a, b)
(x− x0) =

b

(a, b)
(y0 − y).

Then since (
a

(a, b)
,

b

(a, b)

)
= 1

we have by an earlier example that y0 − y = z a
(a,b)

and x− x0 = z b
(a,b)

for some integer z.
But any x and y of this form give a solution, so we have found the complete solution set.
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Theorem 2.1. Suppose that a and b are not both 0 and (a, b)|c. Suppose further that
ax0 + by0 = c. Then every solution of

ax+ by = c

is given by

x = x0 + z
b

(a, b)
, y = y0 − z

a

(a, b)

where z is any integer.

One can see here that the solutions x all leave the same remainder on division by b
(a,b)

and likewise for y on division by a
(a,b)

. This suggests that there may be a useful way of
classifying integers.

2.2.1 Exercises

1. Find all pairs of integers x and y such that 922x+ 2163y = 7.

2. Find all pairs of integers x and y such that 812x+ 2013y = 5.

3. Find (1819, 3587), and find the complete solution in integers x and y to 1819x+3587y =
(1819, 3587).

4. Discuss the solubility of a1x1 + a2x2 + · · ·+ asxs = c in integers.

2.3 An application to factorization

Here is an algorithm due to R. S. Lehmen and based on differences of squares which is a
small improvement on trial division.

Algorithm 2.2 (R. S. Lehman). After trial division this computes a sequence of pairs
t, x.

1. Apply trial division with d = 2, 3, . . ., d ≤ n1/3.
2. For 1 ≤ t ≤ n1/3 + 1 consider the numbers x with

√
4tn ≤ x ≤

√
4tn+ n2/3.

Check each x2 − 4tn to see if it is a perfect square y2 (compute 4tn− ⌊
√
4tn⌋2).

3. If there are x and y such that

x2 − 4tn = y2,

then compute
GCD(x+ y, n).

4. If there is no t for which there are x and y, then n is prime.



26 CHAPTER 2. EUCLID’S ALGORITHM

Example 2.3. Let n = 10001. Then ⌊(10001)1/3⌋ = 21.
Trial division with d = 2, 3, 5, 7, 11, 13, 17, 19 finds no factors.
Let t = 1, so that 4tn = 40004. Then

⌊
√
4n⌋ = 200, ⌊

√
4n+ n2/3⌋ = ⌊(40445)1/2⌋ = 201,

(201)2 = 40401, 397 ̸= y2.

Let t = 2, so that 4tn = 80008. Then

⌊
√
8n⌋ = 282, ⌊

√
8n+ n2/3⌋ = ⌊(80449)1/2⌋ = 283,

x = 283, (283)2 − 8n = 80089− 80008 = 81 = 92, y = 9, x+ y = 292,

(292, 10001) = 73.

The proof that Lehman’s algorithm works depends on a subject called diophantine
approximation. The normal way in to this subject is via a topic called continued fractions,
which in turn has some connections with Euclid’s algorithm. Fortunately we can take a
short cut by appealing to a simple theorem of Dirichlet.

Theorem 2.2 (Dirichlet). For any real number α and any integer Q ≥ 1 there exist
integers a and q with 1 ≤ q ≤ Q such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q(Q+ 1)
.

As an immediate consequence of casting out all common factors of a and q in a/q we
have

Corollary 2.3. The conclusion holds with the additional condition (a, q) = 1.

Before embarking on the proof of the above we use it to show that Lehman’s algorithm
works.

Proof of Lehman’s algorithm. We have to show that when there is a divisor d of n
with n1/3 < d ≤ n1/2, then there is a t with 1 ≤ t ≤ n1/3 + 1 and x, y such that

4tn ≤ x2 ≤ 4tn+ n2/3, x2 − y2 = 4tn.

We use Dirichlet’s theorem with

α =
n

d2
, Q =

⌊
d

n1/3

⌋
.

Since d > n1/3 we have Q > 1. Thus we know that there are a ∈ Z, q ∈ N such that
1 ≤ q ≤ Q and ∣∣∣∣ nd2 − a

q

∣∣∣∣ ≤ 1

q(Q+ 1)
<
n1/3

qd
,
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and so ∣∣∣n
d
q − ad

∣∣∣ < n1/3.

Let

x =
n

d
q + ad, y =

∣∣∣n
d
q − ad

∣∣∣ , t = aq.

Then

x2 =
n2

d2
q2 + 2nqa+ a2d2 = y2 + 4tn.

Moreover

y2 < n2/3

and

t = aq <
n

d2
q2 + n1/3 q

d
≤ n

d2
Q2 + n1/3Q

d
≤ n1/3 + 1.

We now return to the proof of Dirichlet’s theorem.

Proof. Let In denote the interval
[
n−1
Q+1

, n
Q+1

)
and consider the Q numbers

{α}, {2α}, . . . , {Qα}.

(Here we use {∗} = ∗ − ⌊∗⌋ to denote the “fractional” part). If one of these numbers,
say {qα}, lies in I1, then we are done. We take a = ⌊qα⌋ and then 0 ≤ qα − a < 1

Q+1
.

Similarly when one of the numbers lies in IQ+1, then 1 − 1
Q+1

≤ qα − ⌊qα⌋ < 1, whence

− 1
Q+1

≤ qα− (⌊qα⌋+ 1) < 0 and we can take a = ⌊qα⌋+ 1.
When neither of these situations occurs the Q numbers must lie in the Q−1 intervals

I2, . . . , IQ, so there must be at least one interval which contains at least two of the numbers
(the pigeon hole principle, or box argument, or Schubfachprinzip). Thus there are q1, q2
with q1 < q2 such that |(αq2 − ⌊αq2⌋) − (αq1 − ⌊αq1⌋)| < 1

Q+1
. We put q = (q2 − q1),

a = (⌊αq2⌋ − ⌊αq1⌋).

2.3.1 Computing Square Roots

In applying Lehman’s algorithm, and in variants of this method we shall study later, it
is necessary sometimes for a positive integer to check whether it is a perfect square, or
more generally given n to find ⌊

√
n⌋, and if necessary check whether or not n = ⌊

√
n⌋2.

In any case, the simplest general method is to compute
√
n to sufficient precision. Now

if n is not a perfect square, then

1 ≤ n2 − ⌊
√
n⌋2 = (n− ⌊

√
n⌋)(n+ ⌊

√
n⌋)

and so
1√

n+ ⌊
√
n⌋

≤ n− ⌊
√
n⌋.
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Moreover we have equality in the special case n = m2 + 1. Thus to be sure that n is not
a perfect square we need to compute n− ⌊

√
n⌋ to a precision

<
1√

n+ ⌊
√
n⌋
,

That is, to a relative precision compared with
√
n of

<
1√

n(
√
n+ ⌊

√
n⌋)

.

In other words we need at least as many decimal places after the decimal point as before
it. Thus we need a rapid way of computing square roots. Fortunately many software
packages do include such routines, but one should check. Try taking the square root of
10100 − 1, and then the floor function. The answer should be less than 1050.

Fortunately there is an incredibly rapid way of computing square roots, which goes
back to Newton, and is what one would get if one applied the Newton-Raphson method
to computing the positive solution to x2 − n = 0.

Newton’s Algorithm. Let n be a positive integer and take x1 to be a suitable guess to√
n. One could get away with a rather poor guess, but we will suppose that λ is a constant

with
1 ≤ λ < 1 +

√
2

and assume that
λ−1

√
n ≤ x1 ≤ λ

√
n,

Then define inductively

xj+1 =
1

2

(
xj +

n

xj

)
.

There are various observations we can make.
1. It is a simple induction on j to show that xj > 0 for every j ∈ N.
2. Squaring both sides and multiplying out gives

x2j+1 =
1

4
(x2j + 2n+ n2x−2

j ),

x2j+1 − n =
1

4
(x2j − 2n+ n2x−2

j )

=
1

4
(xj − n/xj)

2 ≥ 0.

Hence for j ≥ 2 we have x2j ≥ n.
3. Again rearranging the original definition gives, for j ≥ 2

xj − xj+1 =
xj
2

− n

2xn
=
x2j − n

2xj
≥ 0

xj+1 ≤ xj,
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so {xj : j ≥ 2} is decreasing and bounded below.
4. By the monotonic convergence theorem

ℓ = lim
j→∞

xj

exists.
5. By 1. and 2. for j ≥ 2 we have x2j ≥ n. Thus, since ℓ = inf{xj : j ≥ 2} we have

ℓ ≥
√
n.

6. Now adverting to the definition of xj, the combination theorem for limits gives

ℓ = lim
j→∞

xj+1

= lim
j→∞

1

2

(
xj +

n

2xj

)
=

1

2

(
ℓ+

n

2ℓ

)
.

Solving for ℓ we have
1

2
ℓ =

n

2ℓ
, ℓ2 = n.

7. By 2., when j ≥ 1 we have

0 ≤ x2j+1 − n =
(x2j − n)2

4x2j

so that for j ≥ 2

0 ≤ xj+1 −
√
n =

(xj −
√
n)2(xj +

√
n)2

4x2j(xj+1 +
√
n)

=

(
1 +

√
n

xj

)2
(xj −

√
n)2

4(xj+1 +
√
n)

≤ (xj −
√
n)2

2
√
n

since by 2. we have xj ≥
√
n. Thus

0 ≤ xj+1 −
√
n√

n
≤ 1

2

(
xj −

√
n√

n

)2

.

Hence by induction on j, when j ≥ 2 we have

0 <
xj+1 −

√
n√

n
≤ 1

2j−1

(
x2 −

√
n√

n

)2j−1

.
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Morever, by 2.,

x22 − n =
1

4
(x1 − n/x1)

2

and then by the initial choice of x1 we have

|x1 − n/x1|
2

≤ θ
√
n

where

θ =
λ− 1/λ

2
< 1.

Hence
0 ≤ x2 − n ≤ θ2

and so

0 ≤ xj+1 −
√
n√

n
≤ θ2

j

2j−1
.

The convergence is doubly exponential. Note that with iterative methods of this kind,
when one does arithmetic with real numbers on a computer, they are stored as approx-
imations, and one has to be concerned with accumulated rounding errors. Fortunately
with the above method there are typically only about log log n steps to achieve a suitable
approximation.

2.3.2 Exercises

1. Find a non–trivial factor of 19109.

2. Find a non–trivial factor of 39757.

3. Find a non–trivial factor of 238741

4. Find a non–trivial factor of 2048129.

5. Find a non–trivial factor of 3215031751.

6. Find a non–trivial factor of 9912409831

7. Find a non–trivial factor of 37038381852397.

8. Find a non–trivial factor of 341550071728321.

2.4 Notes

§1. The equation (2.1) is called Bézout’s identity, and is in É. Bézout (1779), Théorie
générale des équations algébriques, Paris, Ph.-D. Pierres. Euclid’s algorithm is in Book
VII, Propositions 1 and 2.
§3. The algorithm described here is extracted and simplified from R. Sherman Lehman,
“Factoring large integers”, Math. Comp., 28(1974), 637-646. The proof we give based
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on Dirichlet’s theorem is simpler. See also F. W. Lawrence, “Factorisation of numbers”,
Messenger of Math., 24(1895), 100-109. For the history of cognate methods see the notes
to Chapter 8.

A significant part of this course will be to develop a technique which speeds up con-
siderable the process of finding t, x and y to satisfy x2 − y2 = 4tn for very large n.

There is an alternative method which is slower than Newton’s method for extracting
squareroots, but which has the advantage that it leads directly to m = ⌊

√
n⌋ and so

enables an immediate check on whether n is a perfect square. This method simply extracts
the digits of m to a given base. There is a description of it at https://en.wikipedia.
org/wiki/Methods_of_computing_square_roots#Digit-by-digit_calculation

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Digit-by-digit_calculation
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Digit-by-digit_calculation
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Chapter 3

Congruences and Residue Classes

3.1 Residue Classes

We now introduce a topic that was first developed by Gauss.

Definition 3.1. Let m ∈ N and define the residue class r modulo m by

r = {x ∈ Z : m|(x− r)}.

By the division algorithm every integer is in one of the residue classes

0, 1, . . . ,m− 1.

This is often called a complete system of residues modulo m.

The remarkable thing is that we can perform arithmetic on the residue classes just as
if they were numbers.

The residue class 0 behaves like the number 0. The reason is that 0 just consists of
the integral multiples of m and adding any one of them to an element of the residue class
r does not change the remainder. Thus for any r

0 + r = r = r + 0.

Suppose that we are given any two residue classes r and s modulo m. Let t be the
remainder of r + s on division by m. Then each element of r and s is of the form
r + mx and s + my respectively, and we know that r + s = t + mz for some z. Thus
r +mx + s +my = t +m(z + x + y) is in t, and it is readily seen that the converse is
true. Thus it makes sense to write r + s = t, and then we have r + s = s+ r.

One can also check that

r +−r = 0.

In connection with this there is a notation that was introduced by Gauss.

33
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Definition 3.2. Let m ∈ N. If two integers x and y satisfy m|x− y, then we write

x ≡ y (mod m)

and we say that x is congruent to y modulo m.

Here are some of the properties of congruences.

x ≡ x (mod m),

x ≡ y (mod m) iff y ≡ x (mod m),

x ≡ y (mod m), y ≡ z (mod m) implies x ≡ z (mod m).

These say that the relationship≡ is reflexive, symmetric and transitive. Thus congruences
modulo m partition the integers into equivalence classes. I leave their proofs as an
exercise.

One can also check the following
If x ≡ y (mod m) and z ≡ t (mod m), then x + z ≡ y + t (mod m) and xz ≡ yt

(mod m).
If x ≡ y (mod m), then for any n ∈ N, xn ≡ yn (mod m) (use induction on n).
If f is a polynomial with integer coefficients, and x ≡ y (mod m), then f(x) ≡ f(y)

(mod m).
Wait a minute, this means that one can use congruences just like doing arithmetic on

the integers!
Here is a very useful result that begins to tell us something about the structure that

we have just created.

Theorem 3.1. Suppose that m ∈ N, k ∈ Z, (k,m) = 1 and

a1, a2, . . . , am

form a complete set of residues modulo m. Then so does

ka1, ka2, . . . , kam.

Proof. Since we have m residue classes, we need only check that they are disjoint. Con-
sider any two of them, kai and kaj. Let kai + mx and kaj + my be typical mem-
bers of each class. If they were the same integer, than kai + mx = kaj + my, so that
k(ai−aj) = m(y−x). But thenm|k(ai−aj) and since (k,m) = 1 we would havem|ai−aj
so ai and aj would be identical residue classes, which would contradict them being part
of a complete system.

An important rôle is played by the residue classes r modulo m with (r,m) = 1. In
connection with this we introduce an important arithmetical function ϕ, called Euler’s
function.
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Definition 3.3. A real or complex valued function defined on N is called an arithmetical
function.

Definition 3.4. Euler’s function ϕ(n) is defined to be the number of x ∈ N with 1 ≤ x ≤ n
and (x, n) = 1.

Example 3.1. Since (1, 1) = 1 we have ϕ(1) = 1.
If p is prime, then the x with 1 ≤ x ≤ p − 1 satisfy (x, p) = 1, but (p, p) = p ̸= 1.

Hence ϕ(p) = p− 1.
The numbers x with 1 ≤ x ≤ 30 and (x, 30) = 1 are

1, 7, 11, 13, 17, 19, 23, 29,

so ϕ(30) = 8.

Definition 3.5. A set of ϕ(m) distinct residue classes r modulo m with (r,m) = 1 is
called a reduced set of residues modulo m.

One way of thinking about this is to start from a complete set of fractions with
denominator m in the interval (0, 1]

1

m
,
2

m
, . . . ,

m

m
.

Now remove just the ones whose numerator has a common factor d > 1 with m. What is
left are the ϕ(m) reduced fractions with denominator m.

Suppose instead of removing the non-reduced ones we just write them in their lowest
form. Then for each divisor k of m we obtain all the reduced fractions with denominator
k. In fact we just proved the following.

Theorem 3.2. For each m ∈ N we have∑
k|m

ϕ(k) = m.

Example 3.2. We have ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(10) = 4,
ϕ(15) = 8, ϕ(30) = 8 and

ϕ(1) + ϕ(2) + ϕ(3) + ϕ(5) + ϕ(6) + ϕ(10) + ϕ(15) + ϕ(30) = 30.

Now we can prove a companion theorem to Theorem 3.1 for reduced residue classes.

Theorem 3.3. Suppose that (k,m) = 1 and that

a1, a2, . . . , aϕ(m)

form a set of reduced residue classes modulo m. Then

ka1, ka2, . . . , kaϕ(m)

also form a set of reduced residues modulo m.
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Proof. In view of the earlier theorem the residue classes kaj are distinct, and since
(aj,m) = 1 we have (kaj,m) = 1 so they give ϕ(m) distinct reduced residue classes,
so they are all of them in some order.

We can now begin to examine the structure of complete and reduced systems of residue
classes.

Theorem 3.4. Suppose that m, n ∈ N and (m,n) = 1 and consider the mn numbers

xn+ ym

with 1 ≤ x ≤ m and 1 ≤ y ≤ n. Then they form a complete set of residues modulo mn.
If instead x and y are further restricted to (x,m) = 1 and (y, n) = 1, then they form a
reduced set of residues modulo mn.

Proof. In the unrestricted case we have mn objects. Moreover if xn + ym ≡ x′n + y′m
(mod mn) then we would have xn ≡ x′n (mod m), so that x ≡ x′ (mod m) and thus
x = x′, and likewise y = y′. Hence we have mn distinct residues modulo mn and so
a complete set. In the restricted case the same argument shows that the xn + ym are
distinct modulo mn. Moreover (xn + ym,m) = (xn,m) = (x,m) = 1 and likewise
(xn + ym, n) = 1, so (xn + ym,mn) = 1 and the xn + ym all belong to reduced residue
classes. Now let z be an arbitrary reduced residue modulo mn. Choose x′ and y′ so that
x′n + y′m = 1 and choose x ∈ x′z modulo m and y ∈ y′z modulo n. Then one can
check that xn+ ym ≡ x′zn+ y′zm = z (mod mn) and hence every reduced residue class
modulo mn is of the form xn+ ym with (x,m) = (y, n) = 1.

Example 3.3. Here is a table of xn+ ym (mod mn) when m = 5, n = 6.

x 1 2 3 4 5
y
1 11 17 23 29 5
2 16 22 28 4 10
3 21 27 3 9 15
4 26 2 8 14 20
5 1 7 13 19 25
6 6 12 18 24 30

The 30 numbers 1 through 30 appear exactly once each. The 8 reduced residue classes
occur precisely in the intersection of rows 1 and 5 and columns 1 through 4.

Immediate from Theorem 3.4 we have

Corollary 3.5. If (m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).
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Definition 3.6. If an arithmetical function f which is not identically 0 satisfies

f(mn) = f(m)f(n)

whenever (m,n) = 1 we say that f is multiplicative.

Corollary 3.6. Euler’s function is multiplicative.

This enables a full evaluation of ϕ(n). If n = pk, then the number of reduced residue
classes modulo pk is simply the number of x with 1 ≤ x ≤ pk and p ∤ x. This is
pk − N where N is the number of x with 1 ≤ x ≤ pk and p|x, and N = pk−1. Thus
ϕ(pk) = pk − pk−1 = pk(1− 1/p). Putting this all together gives

Theorem 3.7. Let n ∈ N. Then

ϕ(n) = n
∏
p|n

(
1− 1

p

)

where, when n = 1 we interpret the product as an “empty” product 1.

Example 3.4. We have ϕ(9) = 6, ϕ(5) = 4, ϕ(45) = 24. Note that ϕ(3) = 2 and
ϕ(9) ̸= ϕ(3)2.

Here is a beautiful and as we shall see, useful, theorem.

Theorem 3.8 (Euler). Suppose that m ∈ N and a ∈ Z with (a,m) = 1. Then

aϕ(m) ≡ 1 (mod m).

Proof. Let
a1, a2, . . . , aϕ(m)

be a reduced set of residues modulo m. Then

aa1, aa2, . . . , aaϕ(m)

is another. Hence

a1a2 . . . aϕ(m) ≡ aa1aa2 . . . aaϕ(m) (mod m)

≡ a1a2 . . . aϕ(m)a
ϕ(m) (mod m).

Since (a1a2 . . . aϕ(m),m) = 1 we may cancel the

a1a2 . . . aϕ(m).
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Corollary 3.9 (Fermat). Let p be a prime number and a an integer. Then

ap ≡ a (mod p).

If p ∤ a, then
ap−1 ≡ 1 (mod p).

One might hope that Fermat’s theorem could give a necessary and sufficient condition
for primality. Unfortunately it is possible that

an−1 ≡ 1 (mod n)

when n is not prime, although this is rare. Examples of

2n−1 ≡ 1 (mod n)

are n = 341, 561, 645. Such n are called pseudoprimes. There are only 245 less than 106,
compared with 78498 primes. Moreover

3341−1 ≡ 56 ̸= 1 (mod 341)

suggests a possible primality test. Given n try trial division a few times, say for d =
2, 3, 5, 7 and then check successively

an−1 ≡ 1 (mod n)

for a = 2, 3, 5, 7. Unfortunately one can still have false positives. Thus

561 = 3.11.17

satisfies
a560 ≡ 1 (mod 561)

for all a with (a, 561) = 1.

Definition 3.7. A composite n which satisfies

an−1 ≡ 1 (mod n)

for all a with (a, n) = 1 is called a Carmichael number

There are infinitely many Carmichael numbers. The smallest is 561 and there are
2163 of them below

25× 109.

Captain: I am never known to quail At the fury of a gale, and I’m never, never sick at sea!
All: What, never?
Captain: No, never!
All: What, never?
Captain: Hardly ever!

Gilbert & Sullivan, HMS Pinafore, 1878.



3.1. RESIDUE CLASSES 39

Definition 3.8. For n ∈ N define M(n) = 2n − 1. A Mersenne prime is a prime of the
form M(n).

Note that if n is composite, n = ab, then M(n) is composite,

M(ab) = (2a − 1)(2a(b−1) + · · ·+ 2a + 1).

Thus for M(n) to be prime it is necessary that n be prime.

Example 3.5. We have

3 = 22 − 1,

7 = 23 − 1,

31 = 25 − 1

127 = 27 − 1.

However that is not sufficient

211 − 1 = 2047 = 23× 89.

3.1.1 Exercises

Euler’s function, congruences
1. Prove that if m, n ∈ N and (m,n) = 1, then mϕ(n) + nϕ(m) ≡ 1 (mod mn).

2. For which values of n ∈ N is ϕ(n) odd?

3. Find all n such that ϕ(n) = 12.

4. Show that if f(x) is a polynomial with integer coefficients and if f(a) ≡ k (mod m),
then f(a+ tm) ≡ k (mod m) for every integer t.

5. Let f(x) denote a polynomial of degree at least 1 with integer coefficients and positive
leading coefficient.

(i) Show that if f(x0) = m > 0, then f(x) ≡ 0 (mod m) whenever x ≡ x0 (mod m).
(ii) Show that there are infinitely many x ∈ N such that f(x) is not prime. 6.

Suppose that m1,m2 ∈ N, (m1,m2) = 1, a, b ∈ Z. Prove that a ≡ b (mod m1) and a ≡ b
(mod m2) if and only if a ≡ b (mod m1m2). 7. Prove that when a natural number is

written in the usual decimal notation, (i) it is divisible by 3 if and only if the sum if its
digits is divisible by 3 and (ii) it is divisible by 9 if and only if the sum if its digits is
divisible by 9.5. Prove that for any integer n

(i) n7 − n is divisible by 42,
(ii) n13 − n is divisible by 2730.

8. Prove that if m is an odd positive integer, then the sum of any complete set of residues
modulo m is 0 (mod m). If m is any integer with m > 2, then prove the analogous result
for any reduced system of residues modulo m.
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9. The numbers Fn = 22
n
+ 1 for n ≥ 0 are called Fermat numbers. F0 through F4 are

prime. Fermat had conjectured that Fn is always prime.
(i) Show that 641|F5 (Euler 1732).

We now know that F5, . . . , F19 are composite and it is now conjectured that there are no
further Fermat primes!

Suppose that p is a prime with p|Fn and let e denote the smallest positive integer
such that 2e ≡ 1 (mod p).

(ii) Show that e exists and e|2n+1.
(iii) Show that e ∤ 2n.
(iv) Show that p ≡ 1 (mod 2n+1).
(v) Prove that

Fn − 2 = Fn−1

(
Fn−1 − 2) = Fn−1 . . . F1F0

and deduce that if m ̸= n, then (Fm, Fn) = 1.

10. Prove that (i) if (a,m) = (a− 1,m) = 1, then

1 + a+ a2 + · · ·+ aϕ(m)−1 ≡ 0 (mod m),

and
(ii) prove that every prime other than 2 or 5 divides infinitely many of the integers 1,

11, 111, 1111, . . ..

11. Prove that if p is prime, and a, b ∈ Z, then

(a+ b)p ≡ ap + bp (mod p).

12. (i) Prove that if p is an odd prime and 0 < k < p, then (assuming 0! = 1) (p−k)!(k−
1)! ≡ (−1)k (mod p).

(ii) Prove that if p ≡ 1 (mod 4), then the congruence x2 + 1 ≡ 0 (mod p) is soluble.

13. Write a program to compute 2n−1 (mod n) and apply it to 12341137 and 12341141
to determine which one is certainly composite.

14. A “probable prime” p is a number such that ap−1 ≡ 1 (mod p) for a = 2, 3, 5, 7. For
each of the numbers n with 100000000000 ≤ n ≤ 100000000025 list the ones which are
probable primes and for those which are not list the values of a for which the test fails.

15. Prove that when a natural number is written in the usual decimal notation, (i) it is
divisible by 3 if and only if the sum if its digits is divisible by 3 and (ii) it is divisible by
9 if and only if the sum if its digits is divisible by 9.

16. Show that the last decimal digit of a perfect square cannot be 2, 3, 7 or 8.

17. Prove that, for any integer a, 6|a(a+ 1)(2a+ 1).

18. Prove that any fourth power must have one of 0, 1, 5, 6 for its unit digit.
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19. Let A = {a1, a2, . . . , an} be a sequence of n integers (not necessarily distinct). Show
that some non-empty subsequence of A has a sum which is divisible by n.

20. Let a, b, and x0 be positive integers and define xn iteratively for n ≥ 1 by xn =
axn−1 + b. Prove that not all the xn are prime.

21. The Möbius function µ(n) is defined as follows. If there is a prime p such that p2|n,
then µ(n) = 0. If n = p1 . . . pk where the pj are distinct, then µ(n) = (−1)k (the case
k=0 corresponds to n = 1).

(i) Prove that µ is a multiplicative function.

(ii) Prove that f(n) =
∑
m|n

µ(m) is multiplicative. Here the sum is over all positive

divisors m of n. Thus for n = 12 it is µ(1) + µ(2) + µ(3) + µ(4) + µ(6) + µ(12).

(iii) Prove that if p is prime and k ≥ 1, then f(pk) = 0. Deduce that f(1) = 1 but
f(n) = 0 whenever n > 1.

(iv) Prove that g(n) =
∑
m|n

µ(m)

m
is multiplicative. Deduce that

g(n) =
∏
p|n

(
1− 1

p

)

where the product is over the distinct prime factors of n.

(v) Prove that ϕ(n) = ng(n).

3.2 Linear congruences

Just as linear equations are the easiest to solve, so one might expect that linear congru-
ences

ax ≡ b (mod m)

are the easiest to solve. In fact we have already solved this in principle since it is equivalent
to the linear diophantine equation

ax+my = b.

Theorem 3.10. The congruence

ax ≡ b (mod m)

is soluble if and only if (a,m)|b, and then the general solution is given by the members
of a residue class x0 modulo m/(a,m). The residue class x0 can be found by applying
Euclid’s algorithm to solve ax0 +my0 = b.
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Proof. The congruence is equivalent to the equation ax +my = b and there can be no
solution if (a,m) ∤ b. We know from Euclid’s algorithm that if (a,m)|b, then

a

(a,m)
x+

m

(a,m)
y =

b

(a,m)

is soluble. Let x0, y0 be such a solution. Obviously every member of the residue class x0
modulo m/(a,m) gives a solution. Let x, y be another solution. Then

a

(a,m)
(x− x0) ≡ 0 (mod

m

(a,m)
)

and since (
a

(a,m)
,

m

(a,m)

)
= 1

it follows that x is in the residue class x0 modulo m/(a,m).

A curious, but sometimes useful, application which uses somewhat similar ideas is the
following

Theorem 3.11 (Wilson). Let p be a prime number, then (p− 1)! ≡ −1 (mod p).

Proof. The cases p = 2 and p = 3 are (2− 1)! = 1 ≡ −1 (mod 2) and (3− 1)! = 2 ≡ −1
(mod 3). Thus we may suppose that p ≥ 5. Then x2 ≡ 1 (mod p) implies x ≡ ±1
(mod p). Hence the numbers 2, 3, . . . , p− 2 can be paired off into p−3

2
mutually exclusive

pairs a, b such that ab ≡ 1 (mod p). Thus (p− 1)! ≡ p− 1 ≡ −1 (mod p).

This theorem actually gives a necessary and sufficient condition for p to be a prime,
since if p were to be composite, then we would have ((p − 1)!, p) > 1. However this is
useless since (p− 1)! grows very rapidly.

What about simultaneous linear congruences?
a1x ≡ b1 (mod q1),

. . . . . .

arx ≡ br (mod qr).

(3.1)

There can only be a solution when each individual equation is soluble, so we require
(aj, qj)|bj for every j. Then we know that each individual equation is soluble for all the
members of some residue class cj modulo qj/(aj, qj). Thus the above system reduces to
a collection of simultaneous congruences

x ≡ c1 (mod m1),

. . . . . .

x ≡ cr (mod mr)

(3.2)
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for some values of cj and mj. Now suppose that for some i and j ̸= i we have (mi,mj) =
d > 1. Then x has to satisfy ci ≡ x ≡ cj (mod d). This imposes further conditions on cj
which can get very complicated. To avoid this one can make the following observations.
Suppose that p1, . . . , ps are all the prime factors of m1 . . .mr. Then for each j we have

mj = p
u1j
1 . . . pusjs

where the uij are non-negative integers. Now

x ≡ cj (mod mj)

if and only if 
x ≡ cj (mod p

u1j
1 ),

. . . . . .

x ≡ cj (mod p
usj
s ),

so we can reduce to the case when all the moduli are prime powers. If a prime divides
more than one mj, so there are i, j, k so that uij > 0 and uik > 0, then we can certainly
suppose, if necessary by switching indices, that 0 < uij ≤ uik. Moreover there will be no
solution unless

cj ≡ ck (mod p
uij
i ),

and in the latter case every solution of

x ≡ ck (mod puiki )

will also be a solution of
x ≡ cj (mod p

uij
i ).

Thus we either have no solution or we can reduce to a system in which each modulus is a
power of a different prime. Thus it suffices to study the system (mi,mj) = 1 when i ̸= j.
Moreover every system can, with some work, be reduced to this case.

Theorem 3.12 (Chinese Remainder Theorem). Suppose that (mi,mj) = 1 for every
i ̸= j. Then the system (3.2) has as its complete solution precisely the members of a
unique residue class modulo m1m2 . . .mr.

Proof. We first show that there is a solution. Let M = m1m2 . . .mr and Mj = M/mj,
so that (Mj,mj) = 1. We know that there is an Nj so that MjNj ≡ cj (mod mj) (solve
yMj ≡ cj (mod mj) in y). Let x be any member of the residue class

N1M1 + · · ·+NrMr (mod M).

Then for every j, since mj|Mi when i ̸= j we have

x ≡ NjMj (mod mj)

≡ cj (mod mj)
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so the residue class x (mod M) gives a solution.
Now we have to show that this is unique. Suppose y is also a solution of the system.

Then for every j we have

y ≡ cj (mod mj)

≡ x (mod mj)

and so mj|y − x. Since the mj are pairwise co-prime we have M |y − x, so y is in the
residue class x modulo M .

Example 3.6. Consider the system of congruences

x ≡ 3 (mod 4),

x ≡ 5 (mod 21),

x ≡ 7 (mod 25).

We have m1 = 4, m2 = 21, m3 = 25, M = 2100, M1 = 525, M2 = 100, M3 = 84. First
we have to solve

525N1 ≡ 3 (mod 4),

100N2 ≡ 5 (mod 21),

84N3 ≡ 7 (mod 25).

Reducing the constants gives

N1 ≡ 3 (mod 4),

(−5)N2 ≡ 5 (mod 21),

9N3 ≡ 7 (mod 25).

Thus we can take N1 = 3, N2 = 20, 7 ≡ −18 (mod 25) so N3 ≡ −2 ≡ 23 (mod 25).
Then the complete solution is given by

x ≡ N1M1 +N2M2 +N3M3

= 3× 525 + 20× 100 + 23× 84

= 5507

≡ 1307 (mod 2100).

3.2.1 Exercises

1. Solve where possible.
(i) 91x ≡ 84 (mod 143)
(ii) 91x ≡ 84 (mod 147)
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2. Solve 11x ≡ 21 (mod 105).

3. Solve the simultaneous congruences

x ≡ 4 (mod 19)

x ≡ 5 (mod 31)

4. Solve the simultaneous congruences

x ≡ 6 (mod 17)

x ≡ 7 (mod 23)

5. Solve the simultaneous congruences

x ≡ 3 (mod 6)

x ≡ 5 (mod 35)

x ≡ 7 (mod 143)

x ≡ 11 (mod 323)

6. Eggs in basket problem (Brahmagupta 7th century A.D.). Find the smallest number
of eggs such that when eggs are removed 2, 3, 4, 5 or 6 at a time 1 remains, but when
eggs are removed 7 at a time none remain.

7. Show that every integer satisfies at least one of the following congruences; x ≡ 0
(mod 2), x ≡ 0 (mod 3), x ≡ 1 (mod 4), x ≡ 1 (mod 6), x ≡ 11 (mod 12). Such a
collection of congruences (with the moduli all different) is known as a covering class. Paul
Erdős asked whether there are covering classes with all the moduli arbitrarily large. For
a long time it was an open question. Eventually Bob Hough showed that there are none.

3.3 General Polynomial Congruences

The solution of a general polynomial congruence can be quite tricky, even for a polynomial
with a single variable

f(x) := a0 + a1x+ · · ·+ ajx
j + · · · aJxJ ≡ 0 (mod m) (3.3)

where the aj are integers. The largest k such that ak ̸≡ 0 (mod m) is the degree of f
modulo m. If aj ≡ 0 (mod m) for every j, then the degree of f modulo m is not defined,
and so does not exist.
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We have already seen that

x2 ≡ 1 (mod 8)

is solved by any odd x, so that it has four solutions modulo 8, x ≡ 1, 3, 5, 7 (mod 8).
That is, more than the degree 2. However, when the modulus is prime we have the more
familiar conclusion.

When we have a solution x to a polynomial congruence such as (3.3) we may sometimes
refer to such values as a root of the polynomial modulo m.

Theorem 3.13 (Lagrange). Suppose that p is prime, and f(x) = a0+a1x+· · ·+ajxj+· · ·
is a polynomial with integer coefficients aj and it has degree k modulo p. Then the number
of incongruent solutions of

f(x) ≡ 0 (mod p)

is at most k.

Proof. The case of degree 0 is obvious. Thus we can suppose k ≥ 1. We use induction
on the degree k. If a polynomial f has degree 1 modulo p, so that f(x) = a0 + a1x with
p ∤ a1, then the congruence becomes

a1x ≡ −a0 (mod p)

and since a1 ̸≡ 0 (mod p) (because f has degree 1) we know that this is soluble by
precisely the members of a unique residue class modulo p.

Now suppose that the conclusion holds for all polynomials of a given degree k and
suppose that f has degree k + 1. If

f(x) ≡ 0 (mod p)

has no solutions, then we are done. Hence we may suppose it has (at least) one, say
x ≡ x0 (mod p). By the division algorithm for polynomials we have

f(x) = (x− x0)q(x) + f(x0)

where q(x) is a polynomial of degree k with integer coefficients. [To see this observe first
that xj − xj0 = (x − x0)(x

j−1 + xj−2x0 + · · ·xj−1
0 ) and so collecting together the terms

we get f(x) − f(x0) = (x − x0)q(x). Moreover the leading coefficient of q(x) is ak ̸≡ 0
(mod p)]. But f(x0) ≡ 0 (mod p), so that

f(x) ≡ (x− x0)q(x) (mod p)

If f(x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then p ∤ x1−x0 so that p|q(x1). [Note that
if the modulus is not prime we cannot make this deduction; m1m2|ab could hold because
m1|a and m2|b]. By the inductive hypothesis there are at most k possibilities for x1, so
at most k + 1 in all.
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It is useful at this stage to consider generally the number of solutions of a polynomial
congruence.

Definition 3.9. Suppose that f is a polynomial with integer coefficients. Given a modulus
m ∈ N, we define the Nf (m) to be the number of different residue classes x modulo m
such that f(x) ≡ 0 (mod m).

For example when f(x) = x2 − 1 we have Nf (8) = 4, and for an odd prime p,
Nf (p) = 2, but Nf (2) = 1. If g(x) = x2 + 5, then Ng(2) = 1, Ng(3) = 2, Ng(5) = 1,
Ng(7) = 2, Ng(11) = 0, Ng(21) = 4. Is there a general formula here? The answer is
yes, but we don’t yet have the tools to decide this. To get the last example you could
compute all 21 values modulo 21, but it is easier to use the following.

Theorem 3.14. Suppose that f is a polynomial with integer coefficients. Then Nf (m)
is a multiplicative function of m.

Note that in the first case above Nf (8) ̸= Nf (2)
3.

Proof. Suppose that (m1,m2) = 1. Choose nj so that n2m2 ≡ 1 (mod m1) and n1m1 ≡ 1
(mod m2). Suppose that x1, x2 are such that f(xj) ≡ 0 (mod mj). Let

x ≡ x1n2m2 + x2n1m1 (mod m1m2).

Then
x ≡ x1n2m2 ≡ x1 (mod m1)

and
f(x) ≡ f(x1) ≡ 0 (mod m1).

Likewise f(x) ≡ 0 (mod m2). Hence f(x) ≡ 0 (mod m1m2). Moreover the x are dis-
tinct modulo m1m2. Thus we have constructed Nf (m1)Nf (m2) solutions to the latter
congruence, so that Nf (m1)Nf (m2) ≤ Nf (m1m2).

On the other hand, if we have f(x) ≡ 0 (mod m1m2), then we can choose x1, x2
uniquely modulo m1 and m2 respectively so that x1n2m2 ≡ x (mod m1) and x2n1m1 ≡ x
(mod m2), and then x ≡ x1n2m2 + x2n1m1 (mod m1m2). Hence

f(x1) ≡ f(x1n2m2 + x2n1m1) ≡ 0 (mod m1)

and likewise f(x2) ≡ 0 (mod m2). Thus Nf (m1m2) ≤ Nf (m1)nf (m2).

In view of the multiplicative of the structure of the roots of a polynomial congruence
it suffices to concentrate on the case when m is a prime power. It turns out that the
really hard case is when the modulus is prime. If we can deal with that, then the case
of higher powers of primes becomes more amenable. Incredibly we can imitate Newton’s
method from calculus. This gives a possible method of lifting from solutions modulo p to
solutions modulo higher powers of p. Note that if we have a solution to

f(x) ≡ 0 (mod pt+1), (3.4)
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then it must also be a solution to

f(x) ≡ 0 (mod pt). (3.5)

Theorem 3.15 (Hensel’s Lemma). Suppose that f is a polynomial with integer coeffi-
cients and there is an x1 such that f(x1) ≡ 0 (mod pt). There are three cases.

(i) If p|f ′(x1) but pt+1 ∤ f(x1), then there is no solution x to (3.4) with x ≡ x1
(mod pt).

(ii) If p|f ′(x1) and pt+1|f(x1), then there are p solutions x2 to (3.4) with x2 ≡ x1
(mod pt), given by taking all possible such x2.

(iii) If p ∤ f ′(x1), then there is a unique solution x2 to (3.4) with x2 ≡ x1 (mod pt)
given by

x2 ≡ x1 + ptj (mod pt+1), jf ′(x1) ≡ −f(x1)p−t (mod p).

Proof. We use the Taylor expansion of f about x1. We have

f(x1 + h) = f(x1) + hf ′(x1) + h2
f ′′(x1)

2
+ · · ·+ hj

f (j)(x1)

j!
+ · · ·

Since f is a polynomial there are only a finite number of terms and each of the coefficients
f (j)(x1)

j!
is an integer. Now put h = ptj where j is at our disposal. All the terms except

the first two are divisible by p2t and 2t ≥ t+ 1. Thus

f(x1 + ptj) ≡ f(x1) + ptjf ′(x1) (mod pt+1).

The first case is clear; when p|f ′(x1) but p
t+1 ∤ f(x1), then there can be no solution. Also

in the second case, p|f ′(x1) and p
t+1 then there is a solution for every choice of j, so for

every x2 modulo pt+1 with x2 ≡ x1 (mod pt). Finally in the third case there is exactly
one solution j modulo p so that

jf ′(x1) ≡ −f(x1)p−t (mod p)

and so there is a unique x2 ≡ x1 + ptj (mod pt+1) with f(x2) ≡ 0 (mod pt+1).
If we think of this as saying

x1 + ptj“ = ”x1 −
f(x1)

f ′(j)

then we can see this exactly imitates Newton’s method for finding roots.

Example 3.7. Find all roots of x2 − 2 ≡ 0 (mod 7r) with 1 ≤ r ≤ 3.
(i) It is easy to see that 3 and 4 are solutions modulo 7.
(ii) If we take x1 = 3, as f(x) = x2−2, f ′(x) = 2x, f(3) = 7, f ′(3) = 6 ̸≡ 0 (mod 7),

it follows that 3 lifts to a unique solution modulo 72. Moreover 6j = jf ′(3) ≡ −f(3)/7 ≡
−1 (mod 7), j = 1, x1 + 7j = 3 + 7 = 10, so x2 ≡ 10 (mod 72).
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(iii) Similarly f(10) = 98 = 2× 72, f ′(10) = 20 ̸≡ 0 (mod 7), so 10 lifts to a unique
solution modulo 73. Then 20j = jf ′(10) ≡ −f(10)/(72) = −2 (mod 7), j ≡ 2 (mod 7),
x3 = 10 + 2× 72 = 108. f(108) = 11662 ≡ 0 (mod 73).

(iv) Now consider x1 = 4. Then f(4) = 14, f ′(4) = 8 ̸≡ 0 (mod 7), so 4 lifts to
a unique solution. 8j = jf ′(4) ≡ −f(4)/7 = −2 (mod 7), j = 5, x2 = x1 + 7j = 39
(mod 72), f(39) ≡ 0 (mod 72).

(v) Now we have x2 = 39, f(39) = 1519, f ′(39) = 78 ≡ 1 (mod 7), j ≡ jf ′(39) ≡
−f(39)/(72) = −31 ≡ 4 (mod 7). x3 = x2 + 72j = 39 + 196 = 235 (mod 73). f(235) =
55223 = 161× 73.

Example 3.8. Find all solutions of x3 − 2 (mod 3r). By trial, the only solution modulo
3 is x1 = 2. f(x) = x3 − 2, f ′(x) = 3x2. Thus f ′(2) ≡ 0 (mod 3) and f(2) = 6. But
32 ∤ f(2) so we are in case (i) so there is no solution modulo 32 and hence none modulo
3r with r ≥ 2.

3.3.1 Exercises

1. Let p denote a prime number and define

f(x) =

p−1∏
i=1

(x− i) = xp−1 +

p−2∑
i=0

aix
i.

(i) Show that if i = 1, 2, . . ., p− 2, then p|ai.
(ii) Suppose that p > 3. When (a, p) = 1, a∗ denotes a solution of ax ≡ 1 (mod p2).

Show that 1∗ + 2∗ + · · ·+ (p− 1)∗ ≡ 0 (mod p2) (Wolstenholme’s congruence).

2. Show that 61! + 1 ≡ 63! + 1 ≡ 0 (mod 71).

3. Prove that 3n2 − 1 can never be a perfect square.

4. (i) Prove that if x ∈ Z, then x2 ≡ 0 or 1 (mod 4).
(ii) Prove that 5y2 + 2 = z2 has no solutions with y, z ∈ Z.

5. (i) Prove that if x ∈ Z, then x3 ≡ 0 or ±1 (mod 7).
(ii) Prove that y3 − z3 = 3 has no solutions with y, z ∈ Z.

6. Let f(x) denote a polynomial of degree at least 1 with integer coefficients and positive
leading coefficient.

(i) Show that if f(x0) = m > 0, then f(x) ≡ 0 (mod m) whenever x ≡ x0 (mod m).
(ii) Show that there are infinitely many x ∈ N such that f(x) is not prime.

7. (i) Suppose that p is an odd prime and x is an integer with p|x2 +1. Prove that x has
order 4 and p ≡ 1 (mod 4).

(ii) Prove that there are infinitely many primes p ≡ 1 (mod 4).

8. Find all solutions (if there are any) to each of the following congruences
(i) x2 ≡ −1 (mod 7), (ii) x2 ≡ −1 (mod 13), (iii) x5 + 4x ≡ 0 (mod 5). 9. (i) Let
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m ∈ N. Prove that

(y − 1)(ym−1 + ym−2 + · · ·+ y + 1) = ym − 1.

(ii) Let n ∈ N. Prove that

(x2 + 1)(x2 − 1)(x4n−4 + x4n−8 + · · ·+ x4 + 1) = x4n − 1.

(iii) Let p be a prime number with p ≡ 1 (mod 4). Prove that x2 ≡ −1 (mod p) has
exactly two solutions.

10. Let n ∈ Z. Prove that if p|n2 + n + 1 and p > 3, then p ≡ 1 (mod 6). Deduce that
there are infinitely many primes p ≡ 1 (mod 6).

11. Suppose that p is a prime number and q|p − 1. Prove that the congruence 1 + x +
· · ·+ xq−1 ≡ 0 (mod p) has exactly q − 1 solutions.

3.4 Notes

§1 The concept of residue classes and the idea that the residue classes modulo n partition
the integers was introduced by Euler about 1750. The notation ≡ was introduced by
Gauss in 1801. For a modern translation see C. F. Gauss, Disquisitiones Arithmeticæ,
Yale University Press, 1965. Euler introduced the eponymous function in 1763.

W. R. Alford, A. Granville & C. Pomerance proved that “There are Infinitely Many
Carmichael Numbers”, Annals of Mathematics. 140(1994), 703–722.

The first complete solution of the Chinese Remainder Theorem in the general case
occurs in the treatise of Ch’in Chiu-shao of 1247.

Wilson’s thereom was first stated by Ibn al-Haytham about 1000AD. The first proof
was given by Lagrange in 1771. Hensel proved his lemma in 1897. The proof in the
non-singular case is motivated by Newton’s method in numerical analysis.



Chapter 4

Primitive Roots and RSA

4.1 Primitive Roots

We have seen that on the residue classes modulo m we can perform many of the standard
operations of arithmetic. Such an object is called a ring. In this case it is usually denoted
by Z/mZ or Zm. In this chapter we will look at its multiplicative structure. In particular
we will consider the reduced residue classes modulo m. An obvious question is what
happens if we take powers of a fixed residue a?

Definition 4.1. Given m ∈ N, a ∈ Z, (a,m) = 1 we define the order ordm(a) of a
modulo m to be the smallest positive integer t such that

at ≡ 1 (mod m).

We may express this by saying that a belongs to the exponent t modulo m.

Note that by Euler’s theorem, aϕ(m) ≡ 1 (mod m), so that ordm(a) exists.

Theorem 4.1. Suppose that m ∈ N, (a,m) = 1 and n ∈ N is such that an ≡ 1 (mod m).
Then ordm(a)|n. In particular ordm(a)|ϕ(m).

Proof. For concision let t = ordm(a). Since t is minimal we have t ≤ n. Thus by the
division algorithm there are q and r with 0 ≤ r < t such that n = tq + r. Hence

ar ≡ (at)qar = aqt+r = an ≡ 1 (mod m).

But 0 ≤ r < t. If we would have r > 0, then we would contradict the minimality of t.
Hence r = 0.

Here is an application we will make use of later.

Theorem 4.2. Suppose that d|p − 1. Then the congruence xd ≡ 1 (mod p) has exactly
d solutions.

51
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Proof. We have

xp−1 − 1 = (xd − 1)(xp−1−d + xd−p−2d + · · ·+ xd + 1).

To see this just multiply out the right hand side and observe that the terms telescope.
We know from Euler’s theorem that there are exactly p − 1 incongruent roots to the
left hand side modulo p. On the other hand, by Lagrange’s theorem, Theorem 3.13, the
second factor has at most p − 1 − d such roots, so the first factor must account for at
least d. On the other hand, again by Lagrange’s theorem, it has at most d.

We have already seen that, when (a,m) = 1, a has order modulo m which divides
ϕ(m). One question one can ask is, given any d|ϕ(m), are there elements of order d?
In the special case d = ϕ(m) this would mean that a, a2, . . . , aϕ(m) are distinct modulo
m, because otherwise we would have au ≡ av (mod m) with 1 ≤ u < v ≤ ϕ(m) and
then av−u ≡ 1 (mod m) and 1 ≤ v − u < ϕ(m) contradicting the assumption that
ordm(a) = ϕ(m).

Example 4.1. m = 7.

a = 1, ord7(1) = 1.

a = 2, 22 = 4, 23 = 8 ≡ 1. ord7(2) = 3.

a = 3, 32 = 9 ≡ 2, 33 = 27 ≡ 6, 34 ≡ 18 ≡ 4,

35 ≡ 12 ≡ 5, 36 ≡ 1, ord7(3) = 6.

a = 4, 42 ≡ 2, 43 ≡ 26 ≡ 1, ord7(4) = 3.

a = 5, 52 = 25 ≡ 4, 53 ≡ 20 ≡ 6, 54 ≡ 30 ≡ 2,

55 ≡ 10 ≡ 3, 56 ≡ 1, ord7(5) = 6.

a = 6, 62 = 36 ≡ 1, ord7(6) = 2.

Thus there is one element of order 1, one element of order 2, two of order 3 and two of
order 6.

Is it a fluke that for each d|6 = ϕ(7) the number of elements of order d is ϕ(d)?

Definition 4.2. Suppose that m ∈ N and (a,m) = 1. If ordm(a) = ϕ(m) then we say
that a is a primitive root modulo m.

We know that we do not always have primitive roots. For example, any number a
with (a, 8) = 1 is odd and so a2 ≡ 1 mod 8, whereas ϕ(8) = 4. There are primitive roots
to some moduli. For example, modulo 7 the powers of 3 are successively 3, 2, 6, 4, 5, 1.

Gauss determined precisely which moduli possess primitive roots. The first step is
the case of prime modulus.

Theorem 4.3 (Gauss). Suppose that p is a prime number. Let d|p−1 then there are ϕ(d)
residue classes a with ordp(a) = d. In particular there are ϕ(p − 1) = ϕ(ϕ(p)) primitive
roots modulo p.
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Proof. We have already seen that the order of every reduced residue class modulo p
divides p− 1. For a given d|p− 1 let ψ(d) denote the number of reduced residues of order
d modulo p. We know that the congruence xd ≡ 1 (mod p) has exactly d solutions. Thus
every solution has order dividing d. Moreover every reduced residue which has order
dividing d must be a solution. Thus for each d|p− 1 we have∑

r|d

ψ(r) = d.

This is reminiscent of an earlier formula∑
r|d

ϕ(r) = d.

Let 1 = d1 < d2 < . . . < dk = p − 1 be the divisors of p − 1 in order. We have a
relationship ∑

r|dj

ψ(r) = dj

for each j = 1, 2, . . . and, of course, the sum is over a subset of the divisors of p−1. I claim
that this determines ψ(dj) uniquely. We could prove this by observing that if N is the
number of positive divisors of p− 1, then we have N linear equations in the N unknowns
ψ(r) and we can we can write this in matrix notation ψψψU = d. Moreover U is an upper
triangular matrix with non-zero entries on the diagonal and so is invertible. Hence the
ψ(dj) are uniquely determined. But we already know a solution, namely ψ = ϕ. If we
wish to avoid the linear algebra we can prove this by induction on j. For the base case
we have ψ(1) = 1. Suppose that ψ(d1), . . . , ψ(dj) are determined. Then we have∑

r|dj+1

ψ(r) = dj+1.

Hence
ψ(dj+1) = dj+1 −

∑
r|dj+1

r<dj+1

ψ(r)

and every term on the right hand side is already determined. Thus we can conclude
there is only one solution to our system of equations. But we already know one solution,
namely ψ(r) = ϕ(r).

Example 4.2. Here is the proof when p = 13, so we are concerned with the divisors of
12.

(
ψ(1), ψ(2), ψ(3), ψ(4), ψ(6), ψ(12)

)

1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 = (1, 2, 3, 4, 6, 12)
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How about higher powers of odd primes? We can use the idea of “lifting” which we
already saw in connection with solutions of congruences.

Theorem 4.4 (Gauss). Suppose that p is an odd prime and d|ϕ(pk) = pk−1(p− 1). Then
there are ϕ(d) residue classes modulo pk which have order d.

Proof. We first prove the existence of a primitive root modulo pk when k > 1. Let g be
a primitive root modulo p. It is clear that a primitive root modulo pk will also be one
modulo p, so it makes sense to examine g + jp. We show that there is a j so that

(g + jp)p−1 = 1 + h1p

with p ∤ h1. Observe that gp−1 = 1+ lp for some l. Then, by the binomial expansion, for
every j

(g + jp)p−1 ≡ gp−1 + (p− 1)gp−2jp (mod p2)

≡ 1 + (l − gp−2j)p (mod p2)

and we may choose j so that p ∤ l − gp−2j.
Now we show that with this j, for every t there is an ht such that

(g + jp)p
t−1(p−1) = 1 + htp

t (p ∤ ht). (4.1)

We do this by induction on t. We have already established the base case. Suppose we
have already established the result for some t. Then

(g + jp)p
t(p−1) = (1 + htp

t)p

≡ 1 + htp
t+1 +

p(p− 1)

2
h2tp

2t (mod p3t).

We have both 2t+ 1 ≥ t+ 2 and 3t ≥ t+ 2. Hence we have

(g + jp)p
t(p−1) ≡ 1 + htp

t+1 (mod pt+2)

and since p ∤ ht this gives the desired conclusion.
Now consider the number g+jp. We show that this is a primitive root modulo pk, and

we may suppose that k ≥ 2. Let d = ordpk(g + jp). Then d|ϕ(pk) = pk−1(p− 1). Hence
d = ptv for some t and v with 0 ≤ t ≤ k − 1 and v|p− 1. We have pt = (p− 1 + 1)t ≡ 1
(mod p− 1). Hence

1 ≡ (g + jp)d ≡ (g + jp)p
tv (mod pk)

≡ (g + jp)v (mod p)

≡ gv (mod p)
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and since g is a primitive root modulo p we have v = p− 1. Now repeating the argument
we have

1 ≡ (g + jp)d (mod pk)

≡ (g + jp)p
t(p−1) (mod pk)

= 1 + ht+1p
t+1

by (4.1). Since p ∤ ht+1 this can only be ≡ 1 (mod pk) if t = k − 1.
Now suppose that d|ϕ(pk) and g is a primitive root modulo pk and consider the ϕ(d)

residue classes
gbϕ(p

k)/d,

modulo pk with (b, d) = 1 and 1 ≤ b ≤ d. Since(
gbϕ(p

k)/d
)d

≡ 1 (mod pk)

they have order r dividing d. Moreover g would have order(
bϕ(pk)r/d, ϕ(pk)

)
= (br, d)ϕ(pk)/d = ϕ(pk)r/d,

and so r = d.

It is easy to see that 1 is a primitive root modulo 2 and 3 is a primitive root modulo 4,
and we have already seen that there are no primitive roots modulo 8, and hence there are
none modulo higher powers of 2. Thus we are half-way to proving the following theorem.

Theorem 4.5 (Gauss). We have primitive roots modulo m when m = 2, m = 4, m = pk

and m = 2pk with p an odd prime and in no other cases.

Proof. The one positive case left to settle is m = 2pk. We have ϕ(2pk) = ϕ(pk). Let g be
a primitive root modulo pk and let G = g if g is odd and G = g+ pk if g is even. Then G
is odd and a primitive root modulo pk. Hence, given x with 1 ≤ x ≤ 2pk and (x, 2pk) = 1
there is a y so that Gy ≡ x (mod pk) and (regardless of the value of y) Gy ≡ x (mod 2).
Hence Gy ≡ x (mod 2pk).

It remains to show that for all other m there are no residue classes of order ϕ(m). We
have already dealt with m = 2k with k ≥ 3. Write m = 2kpk11 . . . pkrr . We can suppose
that (i) k = 0 or 1 and r ≥ 2 or (ii) k ≥ 2 and r ≥ 1. The key to the proof is that given a

with (a,m) = 1 the orders of a modulo 2k, p
kj
j divides ϕ(2k) and ϕ(p

kj
j ) respectively. Thus

the order of a modulo m divides the least common multiple of ϕ(2k), ϕ(pk11 ), . . . ϕ(pkrr ).
That is

ordm(a)|[2k−1, pk1−1
1 (p1 − 1), . . . , pkr−1

r (pr − 1)]

and this LCM is strictly smaller than ϕ(m) because 2 divides at least two terms. Thus
in case (i) [pk1−1

1 (p1− 1), pk2−1
2 (p2− 1)] = pk1−1

1 pk2−1
2 [p1− 1, p2− 1] ≤ 1

2
ϕ(pk11 p

k2
2 ). Likewise

in case (ii) we have [2k−1, pk1−1
1 (p1 − 1)] = 2k−2pk1−1

1 [2, p1 − 1] = 2k−2pk1−1
1 (p1 − 1) <

ϕ(2kpk11 ).
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Example 4.3. Primitive roots modulo 7 and 72.
(i) Modulo 7. Try 2. Divisors of ϕ(7) = 6 are 1, 2, 3, 6 and the order of 2 must be one

of these. 21 = 2 ̸≡ 1, 22 = 4 ̸≡ 1, 23 = 8 ≡ 1 so 2 not a primitive root.
Try 3. 31 = 3 ̸≡ 1, 32 = 9 ≡ 2 ̸≡ 1, 33 = 27 ≡ 6 ̸≡ 1. Hence 3 has order 6 and so is

a primitive root modulo 7. One can now find all primitive roots modulo 7 by considering
3x with 1 ≤ x ≤ 6 and (x, 6) = 1. The only choices for x are 1 and 5, so the only
other primitive root modulo 7 is 35 = 243 ≡ 5 (mod 7). Thus 3, 5 are the primitive roots
modulo 7.

By the way, this trial and error method is the best general method that we have. It is
believed that in general one does not have to search very far, but we cannot prove it.

(ii) Modulo 72. We know that a primitive root modulo 72 has to be one modulo 7,
so we can start with 3. The divisors of ϕ(72) = 6.7 are 1, 2, 3, 6, 7, 14, 21, 42. We know
that 3x ̸≡ 1 (mod 7) when x = 1, 2, 3 and so 3x ̸≡ 1 (mod 72) in those cases. Also since
37 ≡ 3 (mod 7), 314 ≡ 32 ≡ 2 (mod 7) and 321 ≡ 33 ≡ 6 (mod 7) so 3x ̸≡ 1 (mod 72)
in those cases either. Thus we only need check 36 = 729 ≡ 43 ̸≡ 1 (mod 72). Thus 3 is
also a primitive root modulo 72.

We know from the Chinese Remainder Theorem that we can reduce a polynomial
congruence modulo m when m is composite to its prime power constituents. However we
were not able to treat the case m = 2k in general because when k ≥ 3 primitive roots do
not exist. Nevertheless we can usually apply the following theorem.

Theorem 4.6 (Gauss). Suppose that k ≥ 3. Then the numbers (−1)u5v with u = 0, 1
and 0 ≤ v < 2k−2 form a set of reduced residues modulo 2k

Proof. We first prove that if r ≥ 3, then

52
r−2

= 1 + 2rjr (4.2)

with 2 ∤ jr. We prove this by induction on r. It is clear when r = 3, since 52 = 25 =
1 + 23 · 3. If (4.2) holds, then

52
r−1

= 1 + 2r+1jr + 22rj2r

and 2 ∤ jr + 2r−1j2r . We also know that ord2k(5)|ϕ(2k) = 2k−1, so ord2k(5) = 2r for some
0 ≤ r ≤ k − 1. The relationship (4.2) shows that r = k − 2. Hence the numbers

1, 5, 52, 53, . . . , 52
k−2−1

are distinct modulo 2k. Likewise the numbers

−1,−5,−52,−53, . . . ,−52
k−2−1

are distinct modulo 2k. Moreover the numbers in the fist list are ≡ 1 (mod 4) and those
in the second one are ≡ −1 (mod 4). Thus the members of the first list are all different
modulo 2k to those in the second. Thus the two lists together give a complete cover of
the 2k−1 reduced residues modulo 2k.
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In terms of group theory this says that the reduced residues modulo 2k with k ≥ 3,
under multiplication form a direct product of a cyclic group of order 2 and one of order
2k−2.

4.1.1 Exercises

1. Find all the primitive roots of 7, 14, 49.

2. First find a primitive root modulo 19 and then find all primitive roots modulo 19.

3. Prove that 1k + 2k + · · ·+ (p− 1)k ≡ 0 (mod p) when p− 1 ∤ k and is ≡ −1 (mod p)
when p− 1|k.
4. Let g be a primitive root modulo p. Prove that no k exists satisfying gk+2 ≡ gk+1+1 ≡
gk + 2 (mod p).

5. Suppose that p = 2m+1 is a prime, p ∤ a and a is a quadratic non-residue (i.e., x2 ≡ a
(mod p) is insoluble) modulo p. Show that a is a primitive root modulo p.

6. [Gauss] Prove that for any prime number p ̸= 3 the product of its primitive roots is 1
(mod p).

7. The Carmichael function λ(m) is the smallest positive number such that orda(m)|λ(m)
whenever (a,m) = 1. Prove that λ(n)|ϕ(n).
8. Prove that if a has order 3 modulo a prime p, then 1+ a+ a2 ≡ 0 (mod p), and 1+ a
has order 6.

9. Suppose that (10a, q) = 1, and that k is the order of 10 modulo q. Show that the
decimal expansion of the rational number a/q is periodic with least period k.

4.2 Binomial Congruences and Discrete Logarithms

As an application of this theory we can say something about the solution of congruences
of the form

xk ≡ a (mod p)

when p is odd. The case a = 0 is easy. The only solution is x ≡ 0 (mod p). Suppose
a ̸≡ 0 (mod p). Then we can pick a primitive root g modulo p and then there will be a
c so that gc ≡ a (mod p). Also, since any solution x will have p ∤ x we can define y so
that gy ≡ x (mod p). Thus our congruence becomes

gky ≡ gc (mod p).

Hence it follows that
ky ≡ c (mod p− 1).

We have turned a polynomial congruence into a linear one. This is a bit like using logar-
ithms on real numbers. Sometimes the exponents c and y are referred to as the discrete
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logarithms modulo p to the base g. Computing them numerically is hard and there is a
protocol (Diffie-Hellman) which uses them to exchange secure keys and passwords. Our
new congruence is soluble if and only if (k, p − 1)|c, and when this holds the y which
satisfy it lie in a residue class modulo p−1

(k,p−1)
, i.e. (k, p− 1) different residue classes mod-

ulo p − 1. Thus, when a ̸≡ 0 (mod p) the original congruence is either insoluble or has
(k, p− 1) solutions. Thus we just proved the following theorem.

Theorem 4.7. Suppose p is an odd prime. When p ∤ a the congruence xk ≡ a (mod p)
has 0 or (k, p− 1) solutions, and the number of reduced residues a modulo p for which it
is soluble is p−1

(k,p−1)
.

The above theorem suggests that we can use primitive roots to create the residue class
equivalent of logarithms.

Definition 4.3. Given a primitive root g and a reduced residue class a modulo m we
define the discrete logarithm dlogg(a), or index indg(a) to be that unique residue class l
modulo ϕ(m) such that gl ≡ a (mod m)

The notation indg(x) is more commonly used, but dlogg(x) seems more natural.

Example 4.4. Find a primitive root modulo 11 and construct a table of discrete logar-
ithms. First we check 2. The divisors of 11 − 1 = 10 are 1, 2, 5, 10 and 21 = 2 ̸≡ 1
(mod 11), 22 = 4 ̸≡ 1 (mod 11), 25 = 32 ≡ 10 ̸≡ 1 (mod 11), so 2 is a primitive root
modulo 11.

Now we construct a table of powers of 2 modulo 11

y 1 2 3 4 5 6 7 8 9 10
x ≡ 2y 2 4 8 5 10 9 7 3 6 1

Then we construct the “inverse” table

x 1 2 3 4 5 6 7 8 9 10
y = dlog2(x) 10 1 8 2 4 9 7 3 6 5

Note that while x is a residue modulo p (here p = 11), the y are residues modulo p−1
(here 10). The number y is the order, or exponent, to which 2 has to be raised to give x
modulo p. In other words x ≡ gdlogg(x) (mod p).

Example 4.5. We can use this to solve, if possible, the congruences,

x3 ≡ 6 (mod 11),

x5 ≡ 9 (mod 11),

x65 ≡ 10 (mod 11)

Consider the first one, x3 ≡ 6 (mod 11). We can write x ≡ 2y (mod 11), so that
x3 = 23y and we see from the second table that 6 ≡ 29 (mod 11). Thus what we need is
that 3y and 9 match. This means that we need 3y ≡ 9 (mod 10).
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Recall that the modulus here is p − 1 = 10 since 210 ≡ 1 (mod 11). This has the
unique solution

y ≡ 3 (mod 10).

Going to the first table we find that x ≡ 8 (mod 11).
For the second congruence we find that 5y ≡ 6 (mod 10) and now we see that this

has no solutions because (5, 10) = 5 ∤ 6.
In the third case we have 65y ≡ 5 (mod 10) and this is equivalent to 13y ≡ 1 (mod 2)

and this has one solution modulo y ≡ 1 (mod 2), and so 5 solutions modulo 10 given by
y ≡ 1, 3, 5, 7 or 9 modulo 10. Hence the original congruence has five solutions given by

x ≡ 2, 8, 10, 7, 6 (mod 11)

4.2.1 Exercises

1. Show that 3 is a primitive root modulo 17 and draw up a table of discrete logarithms to
this base modulo 17. Hence, or otherwise, find all solutions to the following congruences.

(i) x12 ≡ 16 (mod 17),
(ii) x48 ≡ 9 (mod 17),
(iii) x20 ≡ 13 (mod 17),
(iv) x11 ≡ 9 (mod 17).

2. (i) Find the orders of 2, 3 and 5 modulo 23.
(ii) Find a primitive root modulo 23, construct a table of discrete logarithms, and

solve the congruence x6 ≡ 4 (mod 23).

3. Show that 2 is a primitive root modulo 13 and draw up a table of discrete logarithms
to this base. Hence, or otherwise, find all solutions to the following congruences.

(i) x16 ≡ 3 (mod 13),
(ii) x21 ≡ 3 (mod 13),
(iii) x31 ≡ 7 (mod 13).

4. Show that 2 is a primitive root modulo 11 and draw up a table of discrete logarithms to
this base modulo 11. Hence, or otherwise, find all solutions to the following congruences.

(i) x6 ≡ 7 (mod 11),
(ii) x48 ≡ 9 (mod 11),
(iii) x7 ≡ 8 (mod 11).

4.3 RSA

Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been de-
scribed internally at GCHQ by Cocks in 1973 and then shared with NSA. This is some-
times described as a way of sharing information by public key encryption. The principle
of the method is as follows. Let n, d, e ∈ N be such that

de ≡ 1 (mod ϕ(n)).
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Given a message M encoded as a number, and suppose M < n. Compute

E ≡M e (mod n)

and transmit E. The recipient then computes

Ed (mod n).

Then

Ed ≡ (M e)d =Mde ≡M (mod n)

since ϕ(n)|de − 1 and the recipient recovers the message. The sender has to know only
n and e. The recipient only has to know n and d. The level of security depends only on
the ease with which one can find d knowing n and e. The numbers n and e can be in the
public domain.

The crucial question is the solubility of

de ≡ 1 (mod ϕ(n))

and this in turn requires the value of ϕ(n). Suppose that n is the product of two primes

n = pq.

If n can be factored then we have ϕ(n) = (p−1)(q−1). But this is a known hard problem,
especially when the primes are roughly of the same size.

Of course if the value of ϕ(n) can be discovered not only is the message easily broken
but n is easily factored since one has

p+ q = pq + 1− ϕ(n) = n+ 1− ϕ(n),

pq = n

and once can substitute for q and then solve the quadratic equation in p. In other words,
knowing ϕ(n) is equivalent to factoring n.

4.3.1 Exercises

1. Given that n is a product of two primes p and q with p < q, prove that

p =
n+ 1− ϕ(n)−

√
(n+ 1− ϕ(n))2 − 4n

2
.

If you have a good calculator use this to factorise n where n = 19749361535894833 and
ϕ(n) = 19749361232517120.
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4.4 Notes

$1. The function ordm(a) has its roots in work of Lagrange. Carmichael introduced his
function in R. D. Carmichael (1910), “Note on a new number theory function”. Bulletin
of the American Mathematical Society. 16 (5), 232–238.

Euler invented the term primitive root, and Gauss (1801) was the first to prove that
they exist modulo p for every prime p.

§2. For a description of the Diffie-Hellman key exchange see https://en.wikipedia.
org/wiki/Diffie%E2%80%93Hellman_key_exchange

$3. There is an excellent wikipedia article on RSA at https://en.wikipedia.org/
wiki/RSA_(cryptosystem)

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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Chapter 5

Quadratic Residues

5.1 Quadratic Congruences

We can now apply the theory we have developed to study quadratic congruences, and
especially

x2 ≡ c (mod m).

The structure here is especially rich and was thus subject to much work in the eighteenth
century, culminating in a famous theorem of Gauss.

From the various theories we have developed we know that the first, or base, case we
need to understand is that when the modulus is a prime p, and since the case p = 2 is
rather easy we can suppose that p > 2. Then we are interested in

x2 ≡ c (mod p). (5.1)

By the way, the apparently more general congruence ax2 + bx + c ≡ 0 (mod p) (with
p ∤ a of course) can be reduced by “completion of the square” via 4a(ax2 + bx + c) ≡ 0
(mod p) to (2ax + b)2 ≡ b2 − 4ac (mod p) and since 2ax + b ranges over a complete set
of residues as x does this is equivalent to solving x2 ≡ b2 − 4ac (mod p). Thus it suffices
to know about the solubility of the congruence (5.1).

We know that (5.1) has at most two solutions, and that sometimes it is soluble and
sometimes not

Example 5.1. x2 ≡ 6 mod 7 has no solution (check x ≡ 0, 1, 2, 3 (mod 7)), but

x2 ≡ 5 (mod 11)

has the solutions
x ≡ 4, 7 (mod 11).

If c ≡ 0 (mod p), then the only solution to (5.1) is x ≡ 0 (mod p) (note that p|x2
implies that p|x). If c ̸≡ 0 (mod p) and the congruence has one solution, say x ≡ x0
(mod p), then x ≡ p− x0 (mod p) gives another.

63
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The fundamental question here is can we characterise or classify those c for which the
congruence (5.1) is soluble? Better still can we quickly determine, given c, whether (5.1)
is soluble?

Definition 5.1. If c ̸≡ 0 (mod p), and (5.1) has a solution, then we call c a quadratic
residue which we abbreviate to QR. If it does not have a solution, then we call c a quadratic
non-residue or QNR.

Some authors also call 0 a quadratic residue. Others leave it undefined. We will follow
the latter course. Zero does behave differently. Now we can prove the following simple,
but surprisingly useful, theorem.

Theorem 5.1. Let p be an odd prime number. The numbers

1, 22, 32, . . . ,

(
p− 1

2

)2

are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p.
There are exactly 1

2
(p − 1) quadratic residues modulo p and exactly 1

2
(p − 1) quadratic

non-residues.

Proof. Suppose that 1 ≤ x < y ≤ 1
2
(p− 1). If p|y2 − x2 = (y− x)(y + x), then p|y− x or

p|y + x. But 0 < y − x < y + x < 2y ≤ p− 1 < p. Thus the numbers 1, 22, 32, . . . ,
(
p−1
2

)2
are distinct modulo p.

Now suppose that c is a quadratic residue modulo p. Then there is an x with 1 ≤
x ≤ p− 1 such that x2 ≡ c (mod p). If x ≤ 1

2
(p− 1), then x2 is in our list and represents

c. If 1
2
(p − 1) < x ≤ p − 1, then (p − x)2 ≡ x2 ≡ c (mod p), (p − x)2 represents c, and

1 ≤ p − x ≤ 1
2
(p − 1). Moreover (p − x)2 is in our list. Thus every QR is in our list

and every member of our list is distinct and a QR. Hence there are exactly 1
2
(p− 1) QR.

Moreover then the remaining p − 1 − 1
2
(p − 1) = 1

2
(p − 1) non-zero residues have to be

QNR.

We can use this in various ways.

Example 5.2. Find a complete set of quadratic residues r modulo 19 with 1 ≤ r ≤ 18.
We can solve this by first observing that 12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25, 62 =

36, 72 = 49, 82 = 64, 92 = 81 is a complete set of quadratic residues and then reduce them
modulo 19 to give

1, 4, 9, 16, 6, 17, 11, 7, 5

which we can rearrange as
1, 4, 5, 6, 7, 9, 11, 16, 17.

To help us understand quadratic residues we make the following definition.
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Definition 5.2. Given an odd prime number p and an integer c we define the Legendre
symbol (

c

p

)
L

=


0 c ≡ 0 (mod p),

1 c a QR (mod p),

−1 c a QNR (mod p),

(5.2)

The Legendre symbol is a remarkable function with lots of interesting properties.

Example 5.3. One very important property is that it has the same value if one replaces
c by c+ kp regardless of the value of k. Thus given p it is periodic in c with period p.

Example 5.4. Suppose that p is an odd prime and a ̸≡ 0 (mod p). Then

p∑
x=1

(
ax+ b

p

)
L

= 0. (5.3)

The proof of this is rather easy. The expression ax + b runs through a complete set of
residues as x does and so one of the terms is 0, half the rest are +1, and the remainder
are −1.

Example 5.5. The number of solutions of the congruence

x2 ≡ c (mod p)

is

1 +

(
c

p

)
L

.

We already know that the number of solutions is 1 when p|c, 2 when c is a QR, and 0
when c is a QNR and this matches the above exactly.

We can use this to count the solutions of more complicated congruences.

Example 5.6. How many solutions does

x2 + y2 ≡ c (mod p)

have in x and y? Denote the number by N(p; c). We can rewrite the congruence as
z + w ≡ c (mod p), and then for each solution z, w ask for the number of solutions of
x2 ≡ z (mod p) and y2 ≡ w (mod p). From above this is(

1 +

(
z

p

)
L

)(
1 +

(
w

p

)
L

)
.
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Also w ≡ c− z (mod p), thus the total number of solutions is

N(p; c) =

p∑
z=1

(
1 +

(
z

p

)
L

)(
1 +

(
c− z

p

)
L

)
.

If we multiply this out we get

p+

p∑
z=1

(
z

p

)
L

+

p∑
z=1

(
c− z

p

)
L

+

p∑
z=1

(
z

p

)
L

(
c− z

p

)
L

.

By (5.3) the first and second sums are 0, so that

N(p; c) = p+

p∑
z=1

(
z

p

)
L

(
c− z

p

)
L

.

It is possible also to evaluate the sum here, but we need to know a little more about the
Legendre symbol.

The Legendre symbol is a prototype for an important class of number theoretic func-
tions called Dirichlet characters. A simple example would be to take an odd prime p and a
primitive root modulo g modulo p, and then for a fixed h we can define χ(gk) = e2πihk/(p−1)

and χ(n) = 0 if p|n. The Legendre symbol is the special case h = p−1
2
. Dirichlet used

them to prove that if (a,m) = 1, then there are infinitely many primes in the residue
class a modulo m.

We can combine the definition of the Legendre symbol with a criterion first enunciated
by Euler.

Theorem 5.2 (Euler’s Criterion). Suppose that p is an odd prime number. Then(
c

p

)
L

≡ c
p−1
2 (mod p)

and the Legendre symbol, as a function of c, is totally multiplicative.

Remark 5.1. By multiplicative we mean a function f which satisfies

f(n1n2) = f(n1)f(n2)

whenever (n1, n2) = 1. Totally multiplicative means that the condition (n1, n2) = 1 can
be dropped.

Remark 5.2. The totally multiplicative property means that if x and y are both QR, or
both QNR, then their product is a QR, and their product can only be a QNR if one is a
QR and the other is a QNR.
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Proof. If c is a quadratic residue, then there is an x ̸≡ 0 (mod p) such that x2 ≡ c

(mod p). Hence c
p−1
2 ≡ xp−1 ≡ 1 =

(
c
p

)
L

(mod p). We know that the congruence

c
p−1
2 ≡ 1 (mod p)

has at most p−1
2

solutions and so we have just shown that it has exactly that many
solutions. We also have (

c
p−1
2 − 1

)(
c

p−1
2 + 1

)
= cp−1 − 1

and we know that this has exactly p − 1 roots modulo p. In particular every QNR is a

solution, but cannot be a root of c
p−1
2 − 1. Hence if c is a QNR, then c

p−1
2 ≡ −1 =

(
c
p

)
L

(mod p). This proves the first part of the theorem.
To prove the second part, we have to show that for any integers c1, c2 we have(

c1c2
p

)
L

=

(
c1
p

)
L

(
c2
p

)
L

.

If c1 ≡ 0 (mod p) or c2 ≡ 0 (mod p), then both sides are 0, so we can suppose that
c1c2 ̸≡ 0 (mod p). Now (

c1c2
p

)
L

≡ (c1c2)
p−1
2

≡ c
p−1
2

1 c
p−1
2

2

≡
(
c1
p

)
L

(
c2
p

)
L

(mod p).

Thus p divides (
c1c2
p

)
L

−
(
c1
p

)
L

(
c2
p

)
L

.

But this is −2, 0 or 2 and so has to be 0 since p > 2

We can use this to evaluate the Legendre symbol in special cases.

Example 5.7. Suppose that p is an odd prime. Then(
−1

p

)
L

=

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4).

Observe that by Euler’s criterion(
−1

p

)
L

≡ (−1)
p−1
2 (mod p).
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Now the difference between the left and right hand sides is −2, 0 or 2 and the same
argument as above gives equality.

This example has some interesting consequences.

1. Every odd prime divisor p of the polynomial x2 + 1 satisfies p ≡ 1 (mod 4).

2. There are infinitely many primes of the form 4k + 1.

To see 1. one only has to observe that for any such prime factor −1 has to be a
quadratic residue, so its Legendre symbol is 1. To deduce 2., follow Euclid’s argument by
supposing there are only finitely many such, say p1, . . . , pr, and take x to be 2p1 . . . pr.

A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n2(p)
of the least positive QNR modulo p. One thing one can see straight away is that n2(p)
has to be prime, since it must have a prime factor which is a QNR. He conjectured that
for any fixed positive number ε > 0 we should have n2(p) < C(ε)pε and then proceeded
to prove this at least when ε > 1

2
√
e
where e is the base of the natural logarithm! In 1959

David Burgess, in his PhD thesis (!!) reduced this to any ε > 1
4
√
e
. Where on earth does

the
√
e come from? This was one of the things that got me interested in number theory

when I was a student. Here is an easier result.

Theorem 5.3. Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p− 3

4
.

Proof. Let k be the smallest k such that p < kn2(p). Since n2(p) cannot divide p we have
p < kn2(p) < p + n2(p). Thus kn2(p) is a QR, and so k is a QNR. Therefore n2(p) ≤ k
and so n2(p)

2 ≤ p + n2(p) − 1. This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2
)2 ≤ p− 3

4
. The theorem follows by taking the square. root.

The multiplicative property of the Legendre symbol tells us that it suffices to under-
stand (

q

p

)
L

when p is an odd prime and q is prime. When q is also odd, Euler found a remarkable
relationship between this Legendre symbol and(

p

q

)
L

but no one in the eighteenth century was able to prove it. Gauss proved it when he was
19! The relationship enables one to imitate the Euclid algorithm and so rapidly evaluate
the Legendre symbol.
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5.1.1 Exercises

1. Find a complete set of quadratic residues r modulo 13 in the range 1 ≤ r ≤ 12.

2. Find a complete set of quadratic residues r modulo 17 in the range 1 ≤ r ≤ 16.

3. Find a complete set of quadratic residues r modulo 23 in the range 1 ≤ r ≤ 22.

4. Find all solutions (if there are any) to each of the following congruences
(i) x2 ≡ −1 (mod 7), (ii) x2 ≡ −1 (mod 13), (iii) x5 + 4x ≡ 0 (mod 5).

5. Suppose that p is an odd prime and g is a primitive root modulo p. Prove that g is a
quadratic non-residue modulo p.

6. Prove that 7n3 − 1 can never be a perfect square.

7. Prove that if p is an odd prime, then

p∑
x=1

p∑
y=1

(
xy + 1

p

)
L

= p.

8. (i) Recall that for every reduced residue class r modulo p there is a unique reduced
residue class sr modulo p such that 1 ≡ rsr (mod p), and that for every reduced residue
class s modulo p there is a unique r such that sr ≡ s (mod p). Hence prove that if p is
an odd prime, then

p−1∑
r=1

(
r(r + 1)

p

)
L

=

p−1∑
s=1

(
1 + s

p

)
L

= −1.

(ii) Prove that if p is an odd prime, then the number of residues r modulo p for which
both r and r + 1 are quadratic residues is

p− (−1)
p−1
2

4
− 1.

9. Let N(p; c) be as in Example 5.6 so that

N(p; c) = p+

p∑
z=1

(
z(c− z)

p

)
L

.

(i) Prove that if c ≡ 0 (mod p), then

N(p; 0) = p+ (−1)
p−1
2 (p− 1).

(ii) Prove that if c ̸≡ 0 (mod p), then

p∑
z=1

(
z(c− z)

p

)
L

=

p−1∑
z=1

(
z2(csz − 1)

p

)
L

=

p−1∑
s=1

(
cs− 1

p

)
L

= −(−1)
p−1
2 .
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(iii) Deduce that if c ̸≡ 0 (mod p), then

N(p; c) = p− (−1)
p−1
2 .

10. Let p be an odd prime and g be a primitive root modulo p. Prove that the quadratic
residues are precisely the residue classes g2k with 0 ≤ k < 1

2
(p − 1). Show that when

p > 3 the sum of the quadratic residues modulo p is the 0 residue.

11. Prove that every quadratic non-residue modulo p is a primitive root modulo p if and
only if p = 22

n
+ 1 for some non-negative integer n.

12. Suppose that p ∤ a. Show that the number of solutions to ax2 + bx+ c ≡ 0 (mod p)

is 1 +
(
b2−4ac

p

)
L
.

13. Prove that
∑p

x=1

(
x
p

)
L
= 0 and that if p ∤ a, then

∑p
x=1

(
ax+b
p

)
L
= 0.

14. Let S(p, a, b, c) =
∑p

x=1

(
ax2+bx+c

p

)
L
.

(i) Show that S(p, 1, b, 0) =
∑p−1

y=1

(
1+by
p

)
L
. (Hint: For each x with 1 ≤ x ≤ p− 1 let

y denote the unique solution to xy ≡ 1 (mod p), so that x(x+ b) ≡ x2(1 + by).) Deduce
that S(p, 1, b, 0) = p− 1 when p|b and is −1 when p ∤ b.

(ii) Show that S(p, 1, 0, c) =
∑p

y=1

(
y+c
p

)
L

(
1 +

(
y
p

)
L

)
. (Hint: Note that for each y

with 1 ≤ y ≤ p the number of solutions in x to x2 ≡ y (mod p) is 1+
(
y
p

)
L
) Deduce that

S(p, 1, 0, c) = S(p, 1, c, 0) = p− 1 when p|c and is −1 when p ∤ c.
(iii) Show that if p ∤ a, then S(p, a, b, c) =

(
4a
p

)
L
S(p, 1, 0, 4ac − b2). Deduce that

S(p, a, b, c) = p
(
c
p

)
L
when p|a and p|b, is 0 when p|a and p ∤ b, and satisfies

S(p, a, b, c) =


(
a
p

)
L
(p− 1) when p ∤ a and p|b2 − 4ac,

−
(
a
p

)
L

when p ∤ a(b2 − 4ac).
(5.4)

5.2 Quadratic Reciprocity

What Euler spotted was a very curious relationship between the values of(
q

p

)
L

when p and q are different odd primes, which only depended on their residue classes
modulo 4. Of course, this was before the Legendre symbol was invented and he described
the phenomenon in terms of quadratic residues and non-residues.
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Example 5.8. Here is a short table of values for primes out to 29.

p\q 3 5 7 11 13 17 19 23 29
3 0 −1 1 −1 1 −1 1 −1 −1
5 −1 0 −1 1 −1 −1 1 −1 1
7 −1 −1 0 1 −1 −1 −1 1 1
11 1 1 −1 0 −1 −1 −1 1 −1
13 1 −1 −1 −1 0 1 −1 1 1
17 −1 −1 −1 −1 1 0 −1 −1 −1
19 −1 1 1 1 −1 1 0 1 −1
23 1 −1 −1 −1 1 −1 −1 0 1
29 −1 1 1 −1 1 −1 −1 1 0

Table of
(
q
p

)
L
for odd primes p, q ≤ 23.

Apparently if p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then
(
q
p

)
L
=
(
p
q

)
L
, but if p ≡ q ≡ 3

(mod 4), then
(
q
p

)
L
̸=
(
p
q

)
L
.

Gauss was fascinated by this and eventually found at least seven (!) different proofs.
The first step in many of them is Gauss’ Lemma.

Theorem 5.4 (Gauss’ Lemma). Suppose that p is an odd prime and (a, p) = 1. Apply
the division algorithm to write each of the 1

2
(p − 1) numbers ax with 1 ≤ x < 1

2
p as

ax = qxp + rx with 0 ≤ rx < p. Let m be the number of rx with 1
2
p < rx < p. Then we

have (
a

p

)
L

= (−1)m

where

m ≡
∑

1≤x<p/2

⌊
2ax

p

⌋
(mod 2).

This theorem enables us to evaluate quite a number of cases directly with some ease.

Example 5.9. Take a = 2. Then we begin by considering the numbers 2x with 1 ≤ x <
1
2
p. These numbers satisfy 2 ≤ 2x < p. In view of the latter inequality, they are their

own remainder, i.e. rx = 2x, so we need to count the number of x with 1
2
p < 2x < p, that

is 1
4
p < x < 1

2
p. Hence the number of such x is

m =
⌊p
2

⌋
−
⌊p
4

⌋
.

Now suppose that p = 8k + 1. Then m = 4k − 2k is even. Likewise when p = 8k + 7 we
have m = 2k + 2 is also even. It can be checked similarly that if p ≡ 3 or 5 (mod 8),
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then m is odd. Thus (
2

p

)
L

=

{
1 (p ≡ ±1 (mod 8)),

−1 (p ≡ ±3 (mod 8)).
(5.5)

One can check that another way of writing this is(
2

p

)
L

= (−1)
p2−1

8 .

It is relatively easy to deal with the case a = 3 in a similar way.

Proof of Gauss’ Lemma. The proof is combinatorial - a kind of counting argument. We
consider the product

a
p−1
2

∏
1≤x<p/2

x =
∏

1≤x<p/2

ax.

This is
≡

∏
1≤x<p/2

rx (mod p).

Let A be the set of x with p/2 < rx < p and B the x with 1 ≤ rx < p/2. Then cardA = m
and we can rearrange the product to give

a
p−1
2

∏
1≤x<p/2

x ≡

(∏
x∈A

rx

)∏
x∈B

rx ≡ (−1)m

(∏
x∈A

(p− rx)

)∏
x∈B

rx (mod p). (5.6)

Since |rx−ry| < p and rx−ry ≡ a(x−y) (mod p) we have rx ̸= ry when x ̸= y. Thus the
rx are distinct. Also since p ∤ a and 1 ≤ x, y < p/2 we have p− rx − ry ≡ −a(x+ y) ̸≡ 0
(mod p). Therefore the p − rx with x ∈ A are distinct from the ry with y ∈ B. Hence
in the expression on the right in (5.6) the 1

2
(p − 1) numbers p − rx and rx are just a

permutation of the numbers z with 1 ≤ z ≤ 1
2
(p− 1). Thus (5.6) becomes

a
p−1
2

∏
1≤x<p/2

x ≡ (−1)m
∏

1≤x<p/2

x (mod p)

and so, by Euler’s Criterion,(
a

p

)
L

≡ a
p−1
2 ≡ (−1)m (mod p).

Now we can complete the proof of the first formula in the theorem by our usual observation
that the difference between the two sides is −2, 0 or 2.

For the final formula we note that

rx = ax− p

⌊
ax

p

⌋
(5.7)
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so that 0 ≤ rx < p. Now 0 < 2rx/p < 2 and so ⌊2rx/p⌋ = 0 or 1 and is 1 precisely when
p/2 < rx < p. Thus

m =
∑

1≤x<p/2

⌊2rx/p⌋.

Moreover, by (5.7)

⌊2rx/p⌋ =
⌊
2ax

p
− 2

⌊
ax

p

⌋⌋
=

⌊
2ax

p

⌋
− 2

⌊
ax

p

⌋
≡
⌊
2ax

p

⌋
(mod 2)

and the final formula follows.

If we restrict our attention to odd a there is a useful variant of this.

Theorem 5.5. Suppose that p is an odd prime and (a, 2p) = 1. Then(
a

p

)
L

= (−1)n

where

n =
∑

1≤x<p/2

⌊
ax

p

⌋
.

We also have (
2

p

)
L

= (−1)
p2−1

8 .

Proof. We have (
2

p

)
L

(
a

p

)
L

=

(
2

p

)
L

(
a+ p

p

)
L

=

(
4

p

)
L

(
(a+ p)/2

p

)
L

=

(
(a+ p)/2

p

)
L

= (−1)l
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where

l =

(p−1)/2∑
x=1

⌊
(a+ p)x

p

⌋

=

(p−1)/2∑
x=1

⌊
ax

p
+ x

⌋

=

(p−1)/2∑
x=1

(⌊
ax

p

⌋
+ x

)
= n+

p2 − 1

8
.

If we take a = 1, then we have recovered the stated formula for(
2

p

)
L

.

Then factoring out the formula for this give the result for(
a

p

)
L

.

Now we come to the big one. This is the Law of Quadratic Reciprocity. Gauss called
it “Theorema Aureum”, the Golden Theorem.

Theorem 5.6 (The Law of Quadratic Reciprocity). Suppose that p and q are different
odd prime numbers. Then (

q

p

)
L

(
p

q

)
L

= (−1)
p−1
2

· q−1
2 ,

or equivalently (
q

p

)
L

= (−1)
p−1
2

· q−1
2

(
p

q

)
L

,

We can use this to compute rapidly Legendre symbols.

Example 5.10.(
11

23

)
L

= (−1)
11−1

2
· 23−1

2

(
23

11

)
L

= (−1)55
(

1

11

)
L

= (−1) · 1 = −1.
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Example 5.11.(
101

107

)
L

= (−1)50·53
(
107

101

)
L

= 1 ·
(

6

101

)
L

=

(
2

101

)
L

(
3

101

)
= (−1)

(101)2−1
8 (−1)50·1

(
101

3

)
L

(−1)1275
(
2

3

)
L

= (−1)(−1) = 1.

Example 5.12. Is x2 ≡ 951 (mod 2017) soluble? 2017 is prime but 951 = 3×317. Thus(
951

2017

)
L

=

(
3

2017

)
L

(
317

2017

)
L

.

Now by the law, since 2017 ≡ 1 (mod 4),(
3

2017

)
L

=

(
2017

3

)
L

=

(
1

3

)
L

= 1

and (
317

2017

)
L

=

(
2017

317

)
L

=

(
115

317

)
L

=

(
5

317

)
L

(
23

317

)
L

.

Again applying the law, we have(
5

317

)
L

=

(
317

5

)
L

=

(
2

5

)
L

= −1

and (
23

317

)
L

=

(
317

23

)
L

=

(
18

23

)
L

=

(
2

23

)
L

= 1

so that (
317

2017

)
L

= −1

and thus (
951

2017

)
L

= −1.

Thus the congruence is insoluble.

We can also use the law to obtain general rules, like that for 2 (mod p).

Example 5.13. Let p > 3 be an odd prime. Then(
3

p

)
L

= (−1)
p−1
2

(p
3

)
L
.

Now p is a QR modulo 3 iff p ≡ 1 (mod 3). Thus(
3

p

)
L

=

{
(−1)

p−1
2

(
p ≡ 1 (mod 3)

)
−(−1)

p−1
2

(
p ≡ 2 (mod 3)

)
.
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We can also combine this with the formula in the case of −1 (mod p) which follows from
the Euler Criterion. Thus(

−3

p

)
L

=

{
1

(
p ≡ 1 (mod 3)

)
−1

(
p ≡ 2 (mod 3)

)
.

We now turn to the proof of the law.

Proof of the Law of Quadratic Reciprocity. We start from two applications of the previ-
ous theorem. Thus (

q

p

)
L

(
p

q

)
L

= (−1)u+v

where

u =
∑

1≤x<p/2

⌊
qx

p

⌋
and

v =
∑

1≤y<q/2

⌊
py

q

⌋
.

Observe that
⌊
qx
p

⌋
is the number of positive integers y with 1 ≤ y ≤ qx/p. Thus the first

sum is the number of ordered pairs x, y with 1 ≤ x < p/2 and 1 ≤ y < qx/p. Likewise∑
1≤y<q/2

⌊
py
q

⌋
is the number of ordered pairs x, y with 1 ≤ y < q/2 and 1 ≤ x < py/q,

that is with 1 ≤ x < p/2 and xq/p < y < q/2. Hence u + v is the number of ordered
pairs x, y with 1 ≤ x < p/2 and 1 ≤ y < q/2. This is

p− 1

2
· q − 1

2

and completes the proof. This argument is due to Eisenstein.

5.2.1 Exercises

1. Evaluate the following Legendre symbols.

(i)

(
2

127

)
L

,

(ii)

(
−1

127

)
L

,

(iii)

(
5

127

)
L

,

(iv)

(
11

127

)
L

.
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2. (i) Prove that 3 is a QR modulo p when p ≡ ±1 (mod 12) and is a QNR when p ≡ ±5
(mod 12).

(ii) Prove that −3 is a QR modulo p for primes p with p ≡ 1 (mod 6) and is a QNR
for primes p ≡ −1 (mod 6).

(iii) By considering 4x2 + 3 show that there are infinitely many primes in the residue
class 1 (mod 6).

3. Show that for every prime p the congruence

x6 − 11x4 + 36x2 − 36 ≡ 0 (mod p)

is always soluble.

4. Find the number of solutions of the congruence (i) x2 ≡ 226 (mod 563), (ii) x2 ≡ 429
(mod 563).

5. Decide whether x2 ≡ 150 (mod 1009) is soluble or not.

6. Find all primes p such that x2 ≡ 13 (mod p) has a solution.

7. Show that (x2 − 2)/(2y2 + 3) is never an integer when x and y are integers.

5.3 The Jacobi symbol

In Example 5.12, there were several occasions when we needed to factorise the a in
(
a
p

)
L
.

Jacobi introduced an extension of the Legendre symbol which avoids this.

Definition 5.3. Suppose that m is an odd positive integer and a is an integer. Let
m = pr11 . . . p

rs
s be the canonical decomposition of m. Then we define the Jacobi symbol by( a

m

)
J
=

s∏
j=1

(
a

pj

)rj
L

.

Note that interpreting 1 as being an “empty product of primes” means that(a
1

)
J
= 1.

Remarkably the Jacobi symbol has exactly the same properties as the Legendre sym-
bol, except for one. That is, for a general odd modulus m it does not tell us about the
solubility of x2 ≡ a (mod m).

Example 5.14. We have(
2

15

)
J

=

(
2

3

)
L

(
2

5

)
L

= (−1)2 = 1,

but x2 ≡ 2 (mod 15) is insoluble because any solution would also be a solution of x2 ≡ 2
(mod 3) which we know is insoluble.
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Properties of the Jacobi symbol
1. Suppose that m is odd. Then(a1a2

m

)
J
=
(a1
m

)
J

(a2
m

)
J
.

2. Suppose that the mj are odd. Then(
a

m1m2

)
J

=

(
a

m1

)
J

(
a

m2

)
J

.

3. Suppose that m is odd and a1 ≡ a2 (mod m). Then(a1
m

)
J
=
(a2
m

)
J
.

4. Suppose that m is odd. Then(
−1

m

)
J

= (−1)
m−1

2 .

5. Suppose that m is odd. Then(
2

m

)
J

= (−1)
m2−1

8 .

6. Suppose that m and n are odd and (m,n) = 1. Then( n
m

)
J

(m
n

)
J
= (−1)

m−1
2

·n−1
2 .

The first three of these follow easily from the definition. The rest depend on algebraic
identities combined with inductions on the number of prime factors, but proving them is
tiresome. For 4. we need to know that

m1 − 1

2
+
m2 − 1

2
≡ m1m2 − 1

2
(mod 2),

5. depends on
m2

1 − 1

8
+
m2

2 − 1

8
≡ m2

1m
2
2 − 1

8
(mod 2).

6. Finally here one needs

l − 1

2
· m− 1

2
+
n− 1

2
· m− 1

2
≡ ln− 1

2
· m− 1

2
(mod 2).
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Example 5.15. Return to Example 5.12, where we evaluated
(

951
2017

)
L
. Now we don’t have

to factor 951. By the Jacobi version of the law(
951

2017

)
L

=

(
2017

951

)
J

=

(
115

951

)
J

= −
(
951

115

)
J

= −
(

31

115

)
J

=

(
115

31

)
J

=

(
22

31

)
J

= −
(
31

11

)
J

= −
(

9

11

)
J

= −1.

Note that we can process this like the Euclidean algorithm. Suppose we are interested
in ( n

m

)
L

where n and m are odd. Follow the Euclidean algorithm and obtain

n = q1m+ r1,

m = q2r1 + r2,

r1 = q3r2 + r3,

...
...

Then provided that the m,n, r1, r2 are all odd, for suitable exponents t1, t2, . . . we obtain( n
m

)
J
=
(r1
m

)
J
= (−1)t1

(
m

r1

)
J

= (−1)t1
(
r2
r1

)
J

= (−1)t2
(
r1
r2

)
J

= (−1)t2
(
r3
r2

)
J

= (−1)t3
(
r2
r3

)
J

...
...

...

If any of the rj should be even, then we adjust things by taking out the highest power of
2.

5.3.1 Exercises

1. Let n ∈ Z and let n = (−1)u2vpv11 . . . pvrr be the canonical decomposition of n with
u = 0 or 1, v ≥ 0, and each vj > 0 when r ≥ 1.

(i) If v is odd, then let n0 = |n|2−v and choose m ∈ N so that m ≡ 5 (mod 8) and
m ≡ 1 (mod n0). Prove that ( n

m

)
J
= −1.
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(ii) If v is even, but there is a j for which vj is odd, let nj = |n|2−vp−vjj and choose
m ∈ N so that m ≡ 1 (mod (4nj)) and m is a QNR modulo pj. Prove that( n

m

)
J
= −1.

(iii) If v is even, vj is even for every j and u = 1, choose m ∈ N so that m ≡ 3
(mod 4). Prove that ( n

m

)
J
= −1.

(iv) Prove that if n is not a perfect square, then there is an odd prime number p such
that (

n

p

)
L

= −1.

(v) Prove that if n is a QR for every odd prime number p not dividing n, then n is a
perfect square.

This is an example of the “local to global” principle.

2. Decide the solubility of
(i) x2 ≡ 219 (mod 383),
(ii) x2 ≡ 226 (mod 562),
(iii) x2 ≡ 429 (mod 563),
(iv) x2 ≡ 105 (mod 317).

5.4 Other questions

There are many interesting problems associated with quadratic residues and the Legendre
and Jacobi symbols.

1. How many consecutive quadratic residues are there, that is how many x with
1 ≤ x ≤ p− 2 have the property that x and x+1 are both quadratic residues modulo p?
This number is

p−2∑
x=1

1

4

(
1 +

(
x

p

)
L

)(
1 +

(
x+ 1

p

)
L

)
.

The method of exercise 5.1.1.13 is useful here. How about the number of triples x, x +
1, x+ 2, or how about a fixed sequence of QR and QNR?

2. Given an N with 0 ≤ N ≤ p, how small can you make M , regardless of the value
of N , and ensure that the interval (N,N +M ] contains a quadratic non-residue?

3. Let m be an odd positive integer, and for brevity write χ(x) for the Jacobi symbol(
x
m

)
J
. For a complex number z define

L(z;χ) =
∞∑
n=1

χ(n)

nz
.
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This converges for ℜz > 0. There is a Riemann hypothesis for this function but we
cannot prove it. Also L(1, χ) has some interesting values. For example if m = 3, then

L(1, χ) =
π

3
√
3
.

4. The Gauss sum

τp =

p∑
x=1

(
x

p

)
L

e2πix/p

was studied by Gauss in connection with several of his proofs of the law of quadratic
reciprocity. He showed that

τp =

{√
p (p ≡ 1 (mod 4))

i
√
p (p ≡ 3 (mod 4)).

5.4.1 Exercises

1. (i) Prove that if χ1(n) = (−1)(n−1)/2 when n is odd and χ1(n) = 0 when n is even,
then L(1, χ1) =

π
4

(ii) Prove that if χ(n) =
(
n
3

)
L
, then L(1, χ) = π

3
√
3

(iii) Prove that if χ(n) =
(
n
5

)
L
, then L(1, χ) = 1√

5
log 3+

√
5

2

2. Let cn ∈ C (n = 1, 2, . . . , p). Prove that

p∑
a=1

∣∣∣∣∣
p∑

n=1

cne
2πian/p

∣∣∣∣∣
2

= p

p∑
n=1

|cn|2.

3. For an odd prime p define

S(p, a) =

p∑
y=1

e2πiay
2/p

(i) Prove that if p ∤ a, then

S(p, a) =

p∑
x=1

(
1 +

(
x

p

)
L

)
e2πiax/p

=

p∑
x=1

(
x

p

)
L

e2πiax/p

=

(
a

p

)
L

τp.

(ii) Prove that
p∑
a=1

|S(p, a)|2 = p(2p− 1).
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(iii) Prove that

(p− 1)|τp|2 =
p−1∑
a=1

∣∣∣∣(ap
)
L

τp

∣∣∣∣2
=

p−1∑
a=1

|S(p, a)|2

= p(p− 1),

whence |τp| =
√
p.

5.5 Computing Solutions to Quadratic Congruences

The first algorithm computes the Jacobi symbol(m
n

)
J

for a given positive odd integer n and integer m, and is just an immediate application
of the law of quadratic reciprocity together with the removal of any powers of 2 at each
stage and an evaluation of the corresponding(

2

n

)
J

.

Algorithm 5.1 (LJ). Given an integer m and a positive integer n, compute
(
m
n

)
J
.

1. Reduction loops.

1.1. Compute m ≡ m (mod n), so the new m satisfies 0 ≤ m < n. Put
t = 1.

1.2. While m ̸= 0

1.2.1. While m is even

put m = m/2 and, if n ≡ 3 or 5 (mod 8), then put t = −t.
1.2.2. Interchange m and n.

1.2.3. If m ≡ n ≡ 3 (mod 4), then put t = −t.
1.2.4. Compute m ≡ m (mod n), so that the new m < n.

2. Output.

2.1. If n = 1, then return t.

2.2. Else return 0.
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Generally we will refer to the second and third algorithms here as QC. They are
often attributed to Shanks (1973) and Tonelli (1891), but in one form or another they in
principle go back to Euler, Legendre and Gauss.

The second algorithm computes a solution x to

x2 ≡ a (mod p)

when p is an odd prime p ̸≡ 1 (mod 8).

Algorithm 5.2 (QC357/8). Given a prime p ≡ 3, 5, 7 (mod 8) and an a with
(
a
p

)
L
=

1, compute a solution to x2 ≡ a (mod p).
1. If p ≡ 3 or 7 (mod 8), then compute x ≡ a(p+1)/4 (mod p). Return x.
2. If p ≡ 5 (mod 8), then compute x ≡ a(p+3)/8 (mod p). Compute x2 (mod p).

2.1. If x2 ≡ a (mod p), then return x.

2.2. If x2 ̸≡ a (mod p), then compute x ≡ x2(p−1)/4 (mod p). Return x.

Proof. The proof that this gives a solution is relatively easy. When p ≡ 3 (mod 4) we
have p+1

4
∈ N, so

x ≡ a(p+1)/4 (mod p)

makes sense and then

x2 ≡ a(p+1)/2 = a1+
p−1
2 ≡ a

(
a

p

)
L

= a (mod p)

by Euler’s criterion.
When p ≡ 5 (mod 8), the only case at issue is when a(p+3)/4 ̸≡ a (mod p), so that

a(p−1)/4 ̸≡ 1 (mod p). But by Euler’s criterion a(p−1)/2 ≡ 1 (mod p), so a(p−1)/4 ≡ ±1
(mod p), and hence a(p−1)/4 ≡ −1 (mod p). Thus the new choice of x gives

x2 ≡ a(p+3)/42(p−1)/2 ≡ (−a)
(
2

p

)
L

= (−a)(−1)(p
2−1)/8 = (−a)(−1) = a (mod p).

The final algorithm deals with the trickier case p ≡ 1 (mod 8). This algorithm will
work for any odd prime, but the previous algorithm is faster for p ̸≡ 1 (mod 8).

Algorithm 5.3 (QC1/8). Given a prime p ≡ 1 (mod 8) and an a with
(
a
p

)
L
= 1,

compute a solution to x2 ≡ a (mod p).

1. Compute a random integer b with
(
b
p

)
L
= −1. In practice checking successively the

primes b = 2, 3, 5, . . ., or even crudely just the integers b = 2, 3, 4, . . . , will find such a b
quickly.
2. Factor out the powers of 2 in p− 1, so that p− 1 = 2su with u odd. Compute d ≡ au

(mod p). Compute f ≡ bu (mod p).
3. Compute an m so that dfm ≡ 1 (mod p) as follows.
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3.1. Initialise m0 = 0.

3.2. For each i = 0, 1, . . . , s−1 compute g ≡ (dfmi)2
s−1−i

(mod p). If g ≡ −1
(mod p), then put mi+1 = mi + 2i. Otherwise take mi+1 = mi

3.3. Return m = ms. This will satisfy

dfm ≡ 1 (mod p), and m will be even. (5.8)

4. Compute x ≡ a(u+1)/2fms/2 (mod p). Return x.

Proof. The proof that this works is a little more involved than the previous algorithms.
That x is a solution follows because(

a
u+1
2 f

m
2

)2
= au+1fm = adfm ≡ a (mod p).

The crucial thing is (5.8). To prove this we first make some observations. We have

d2
s−1 ≡ a2

s−1u = a
p−1
2 ≡ 1 (mod p)

by Euler’s criterion. Hence ordp(d)|2s−1. Also

f 2s−1 ≡ b2
s−1u = b

p−1
2 ≡ −1 (mod p)

by Euler’s criterion. Moreover

f 2s ≡ bp−1 ≡ 1 (mod p),

so ordp(f) = 2s.
Now we prove by induction on i for 0 ≤ i ≤ s that

(dfmi)2
s−i ≡ 1 (mod p).

For the base case i = 0 we have m0 = 0 so that

(dfm0)2
s

= d2
s ≡ 1 (mod p).

For the inductive step suppose that for some i with 0 ≤ i ≤ s− 1 we have

(dfmi)2
s−i ≡ 1 (mod p).

Then
(dfmi)2

s−1−i ≡ ±1 (mod p).

If
(dfmi)2

s−1−i ≡ 1 (mod p),
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then mi+1 = mi and so

(dfmi+1)2
s−1−i ≡ 1 (mod p)

as required. If

(dfmi)2
s−1−i ≡ −1 (mod p),

then mi+1 = mi + 2i and so

(dfmi+1)2
s−1−i ≡ (df 2i+mi)2

s−1−i

= (dfmi)2
s−1−i

f 2s−1

≡ −b
p−1
2

≡ 1 (mod p)

once more, by Euler’s criterion.

5.5.1 Exercises

1. Write a computer program to implement (LJ), and use it evaluate the Legendre
symbols

(i)

(
40000000003

100000000019

)
L

, (ii)

(
100000000057

40000000031

)
L

, (iii)

(
40000000003

100000000091

)
L

.

2. Write an algorithm (QC) to find the solutions to x2 ≡ a (mod p) where a are the
quadratic residues and p are the corresponding primes occurring in question 1. above. 3.

Consider the numbers

a1 = 23456789023456787,

a2 = 23456789023456789,

m1 = 77778888999911107,

m2 = 55556666777711111.

Use (LJ) to evaluate (
a1
m1

)
J

,

(
a2
m1

)
J

,

(
a1
m2

)
J

,

(
a2
m2

)
J

.

Assuming that the mj are prime, for those ai for which the Legendre symbol is +1 solve
(QC)

x2 ≡ ai (mod mj).
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5.6 Notes

§1. Fermat and Euler had studied questions which in modern terminology can be de-
scribed in terms of the solubility of quadratic congruences. A. M. Legendre’s eponymous
symbol was introduced by him in “Essai sur la théorie des nombres”, Paris, 1798, p.
186. I. M. Vinogradov made his conjecture on the least quadratic non-residue in “On the
distribution of quadratic residues and non-residues”, Zh. Fiz,-Mt. Obshch. Univ. Perm
2, 1-16, 1919. The estimate of D. A. Burgess’s result is in “The distribution of quadratic
residues and non-residues”, Mathematika 4(1957), 106-112.

Assuming the Riemann Hypothesis associated with the Dirichlet L-function L(s;χ)
where χ is the Legendre symbol, Ankeny showed that n2(p) = O

(
(log p)2

)
. For an account

of this see H. L. Montgomery, “Ten Lectures on the Interface Between Analytic Number
Theory and Harmonic Analysis”, American Mathematical Society, 1994, p. 176. ISBN
0-8218-0737-4.

Yu. V. Linnik “A remark on the least quadratic non-residue, Doklady Akad. Nauk
URSS (N.S.) 36(1942), 119–120, showed that if there are any primes for which n2(p) is
unexpectedly large, then they are rare. In particular he showed that if c > 0 is fixed,
then the number of primes p with 2 < p ≤ x such that n2(p) > (log p)c is at most

x2/c+f(x)

where f(x) → 0 as x → ∞, and that if δ > 0 is fixed, then the number of primes p with
2 < p ≤ x for which n2(p) > pδ is at most

C(δ) log log x

where C(δ) is a positive number which depends only on δ.
§2. Euler in 1783 had formulated a conjecture that if we take the primes p in the

residue class r modulo 4m, then the residue class m modulo p is always a QR modulo p
or always a QNR modulo p and moreover 4m− r is the same. That is, when p ∤ 4m,(

m

p

)
L

depends only on the residue class r in which p lies modulo 4m, and is the same for primes
in the residue class 4m−r. This follows at once from the LQR in our modern formulation.
The first correct proof is due to Gauss (1796). This was before Legendre invented his
symbol and Gauss used the much clumsier notation aRp and aNp to indicate whether a
was a quadratic residue modulo p or a quadratic non-residue.

§3. Jacobi defined his symbol in C. G. J. Jacobi (1837), “Über die Kreisteilung und
ihre Anwendung auf die Zahlentheorie”, Bericht Ak. Wiss. Berlin, 127–136.

§4. The investigation of the distribution of patterns of k consecutive QR and QNR is
intimately connected with questions concerning the zeros of the zeta function of curves
y2 = f(x) over finite fields. See the article on “Quadratic residue patterns modulo a
prime” by Keith Conrad at https://kconrad.math.uconn.edu/blurbs/

https://kconrad.math.uconn.edu/blurbs/
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Exercise 5.5.3 shows that the sum

S(p, a) =

p∑
x=1

e(ax2/p)

is closely related to τp. Gauss showed that τp =
√
p when p ≡ 1 (mod 4) and τp = i

√
p

when p ≡ 3 (mod 4) and used this as the basis of one of his proofs of LQR.
We know less about the sums

Sk(a, p) =

p∑
x=1

e(axk/p).

We do know that if p ∤ a, then

|Sk(p, a)| ≤
(
(k, p− 1)− 1

)√
p.

but in general we do not know how

p−1/2Sk(p, a)

is distributed. In a few cases, especially the cubic case when p ≡ 1 (mod 3) it is known
that the argument is “uniformly distributed”. See D. R. Heath-Brown, “Kummer’s con-
jecture for cubic Gauss sums”, Israeli. J. Math. 120(2000), 97–124 and the reference to
the earlier paper of Heath-Brown and Patterson.
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Chapter 6

Primality and Probability

6.1 Miller-Rabin

In its simplest form the Miller-Rabin test is a test for composites, although with some
compromises it is also an effective test for primality.

Theorem 6.1. Let n ∈ N be odd, n > 1 and take out the powers of 2 from n− 1 so that

n− 1 = 2uv

where v is odd. Choose a ∈ {2, 3, . . . , n− 2}. If

av ̸≡ 1 (mod n) and a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u− 1, (6.1)

then n is composite and a is a witness.

Proof. If (a, n) > 1, then (6.1) will hold and n will be composite. Suppose that (a, n) = 1
and n were to be prime. Then by Fermat-Euler we have

n|an−1 − 1 = a2
uv − 1 = (av − 1)(av + 1)(a2v + 1) . . . (a2

u−1v + 1) (6.2)

and n would have to divide one of the factors on the right, contradicting (6.1).

If we can find a witness, then we have certainty that n is composite. There are some
observations that one can make in association with this. It is a good idea to check a
couple of things before applying the test since they can be checked very rapidly.

A. Check n for small prime factors p for, say, p ≤ log n.
B. Check that n is not a prime power, n = pk. One can do this by checking to see if

n1/k = ⌊n1/k⌋

for 2 ≤ k ≤ logn
log 2

. These remarks combined with the next theorem show that witnesses
always exist.

89
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Theorem 6.2. If n is odd and has at least two different prime factors p and q, then they
can be chosen so that

p− 1 = 2jl, q − 1 = 2km, j ≤ k,

and then there are a with (a, n) = 1 and(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
> 0

and such an a is a witness.

As it stands this theorem only proves the existence of witnesses. Since we do not
expect to have found numerical values for p or q, it does not tell us how to find the a.
However it can be used to show that we do not have to search very far. By the way,
this process reminds me that much of mathematical research, indeed much of scientific
research, is forensic in nature. We are currently studying the pathology of factorisation.

When (a, n) = 1, the expression

1

4

(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
is 0 or 1, and when it is 1, a is a witness. Thus the number of witnesses for n is at least

n∑
a=1

(a,n)=1

1

4

(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
.

Moreover
n∑
a=1

(a,n)=1

(
a

p

)
L

=
n∑
a=1

(a,n)=1

(
a

q

)
L

=
n∑
a=1

(a,n)=1

(
a

pq

)
J

= 0

(see Exercise 6.1.1). Thus

n∑
a=1

(a,n)=1

1

4

(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
=
ϕ(n)

4
.

Therefore at least a quarter of all reduced residues modulo n act as witness. Hence we
can proceed by picking N values of a at random. Then the probability that none of them
are witnesses is at most (3/4)N . Therefore if we pick, say, at least 10 log n numbers a at
random, then we can be practically certain of finding a witness.

If we want some kind of absolute certainty, then we can assume the truth of the
Riemann hypothesis for the three functions

L(s;χ) =
∞∑
m=1

χ(m)

ms
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with

χ(m) =

(
m

p

)
L

, χ(m) =

(
m

q

)
L

, χ(m) =

(
m

pq

)
J

, (6.3)

which in practice means that we have to assume it for every Jacobi symbol modulo n
since in principal we do not know the numerical values of p and q. This hypothesis implies
that if n is large, then for N = 2(log n)2 we have

∑
r≤N
r prime

(1− r/N)

(
1 +

(
r

p

)
L

)(
1−

(
r

q

)
L

)
(log r) > 0. (6.4)

In turn, this tells us that not only is there a witness a ≤ 2(log n)2, but we can suppose
that it is prime.

Proof of Theorem 6.2. Let p and q be as in the hypothesis and suppose they divide n to
order d and e respectively. If we choose any QR x modulo p, any QNR y modulo q, and
any z with (z, np−dq−e) = 1, then by the Chinese Remainder Theorem, Theorem 3.12,
it follows that there are a ≡ x (mod p), ≡ y (mod q) and ≡ z (mod np−dq−e) which
satisfy the hypothesis. If an−1 ̸≡ 1 (mod n), then none of the factors on the right of (6.2)
can be divisible by n, so any such a will be a witness. Thus we can suppose that we have
an−1 ≡ 1 (mod n).

Let u and v be as in Theorem 6.1 so that n− 1 = 2uv with v odd. For 0 ≤ w ≤ u− 1
we have

a2
wv + 1 = (av − 1 + 1)2

w

+ 1 ≡ 2 (mod av − 1).

Hence (
av − 1, a2

wv + 1
)
|2.

Likewise when 0 ≤ w < x ≤ u− 1 we have

a2
xv + 1 = (a2

wv + 1− 1)2
x−w

+ 1 ≡ 2 (mod a2
wv = 1)

and so (
a2

wv + 1, a2
xv + 1

)
|2.

Thus p and q, and a fortiori n cannot divide two different factors in (6.2).
Thus it remains to just consider the case when n divides exactly one of the factors

av − 1, a2
wu + 1. The hypothesis implies that(

a

p

)
L

= 1,

(
a

q

)
L

= −1.

Hence, by Euler’s Criterion, Theorem 5.2,

a
p−1
2 ≡ 1 (mod p), a

q−1
2 ≡ −1 (mod q).
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Let e = ordp(a) and f = ordq(a). Then

e

∣∣∣∣p− 1

2
, f |q − 1, f ∤

q − 1

2
.

Recall that the hypothesis also states that

p− 1 = 2jl, q − 1 = 2km, j ≤ k.

Hence

e = 2il′, f = 2km′ with 0 ≤ i ≤ j − 1, l′|l, m′|m.

In particular

0 ≤ i < j ≤ k. (6.5)

Recall n divides exactly one of the expressions

av − 1, av + 1, . . . , a2
u−1v + 1.

Consider the different possibilities. If n|av − 1, then av ≡ 1 (mod q) and f |v. But f is
even and v is odd, so this is impossible.

If n|a2sv + 1 for some s with 0 ≤ s ≤ u− 1, then

a2
s+1v ≡ 1 (mod n), a2

sv ≡ −1 (mod n).

Thus

e|2s+1v, e ∤ 2sv,

and since e = 2il′ we have l′|v, i = s+ 1. Moreover

f |2s+1v, f = 2km′, 2km′|2s+1v,m′|v, k ≤ s+ 1.

Thus k ≤ i which contradicts (6.5). Hence a is a witness.

Note that the previous theorem depends on the theory of quadratic residues and
non-residues. Thus it should be no surprise that showing that there is a small witness is
similar to showing that there are small quadratic non-residues. Thus the best bound for a
leads to questions which have a similar provenance to that concerning the least quadratic
non-residue n2(p) discussed in Theorem 5.3 and its preamble, and in §5.6. In particular
Linnik’s work quoted there suggests that any composite n with no small witnesses would
be incredibly rare.

Since no-one has ever come close to disproving the Riemann Hypothesis I am going
to suggest the second approach, which I outline in the following algorithm.
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Algorithm 6.1 (Miller Rabin). Assume that n is odd.

1. Check n for small factors not exceeding log n.

2. Check that n is not a prime power.

3. Take out the powers of 2 in n− 1 so that

n− 1 = 2uv

with v odd.

4. For each a with 2 ≤ a ≤ min
{
2(log n)2, n− 2

}
check the statements

n|av − 1, n|av + 1, . . . , n|a2u−1v + 1.

5. If a is such that they are all false, stop and declare that n is composite and a is a
witness.

6. If no witness a is found with a ≤ min
{
2(log n)2, n − 2

}
, then declare that n is

prime.

There are a couple of further wrinkles that can be tried in this process. Before doing
the divisibility checks in 4, check that (a, n) = 1 because if (a, n) > 1, then one has a
proper divisor of n and not only is n composite but one has found a factor. With regard
to the construction of a in the proof of Theorem 6.2, we see that a is a QNR with respect
to one of the prime factors of n, and we observed in Section §5.1 that the least QNR
modulo a prime is itself a prime. Thus it is no surprise that in the use of the Riemann
Hypothesis mentioned above the a ≤ 2(log n)2 which arises is in fact prime. Thus we can
restrict our attention to prime values of a.

In this form the test obviously runs in polynomial time.

Example 6.1. Let n = 133. Then

n− 1 = 22 × 33

and

233 ≡ 50 (mod 133), 266 ≡ 106 (mod 133)

so

n ∤ 233 − 1, n ∤ 233 + 1, n ∤ 266 + 1

Thus n is composite and 2 is a witness.

To establish primality in a non-trivial case involves quite a lot of calculation and
is best left to a computer program. However to illustrate the method here is a trivial
example.
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Example 6.2. Let n = 11. Then n− 1 = 2× 5 and we have the following

25 = 32 ≡ −1 (mod 11)

35 = 243 ≡ 1 (mod 11)

45 ≡ (25)2 ≡ 1 (mod 11)

55 = 3125 ≡ 1 (mod 11)

65 = (−5)5 ≡ −1 (mod 11)

75 = (−4)5 ≡ −1 (mod 11)

85 = (−3)5 ≡ −1 (mod 11)

95 = (35)2 ≡ 1 (mod 11)

There is no witness, so n is prime. Of course we knew that! Even for a number like
211 this would be heavy handed and is one of the reasons for an initial range of trial
division. For large n one will only need to consider a relatively small range of a.

6.1.1 Exercises

1. Prove that if n is odd and p and q are different prime factors of n, then

n∑
m=1

(m,n)=1

(
m

p

)
L

=
n∑

m=1
(m,n)=1

(
m

q

)
L

=
n∑

m=1
(m,n)=1

(
m

pq

)
J

= 0.

2. Write a programme to implement the Miller–Rabin test in its deterministic form in
which one assumes the Generalized Riemann Hypothesis, and use it to test the following
six numbers. The output from your programme should read, for each number, either “n
is composite. a is a witness.” where n is the number being tested and a is the value of
the witness, or “n is prime”. The run time on each of these numbers should not exceed
a minute or so.

(a) 3215031751,
(b) 341550071728321,
(c) 1234567891234567919,
(d) 3825123056546413051,
(e) 1296001987165015643369032371289,
(f) 59545797598759584957498579859585984759457948579595794859456799501.

3. Write a computer program to implement (LJ), the evaluation of the Jacobi symbol,
and use it

(i) to find the primes p with 83 ≤ p ≤ 113 for which a = 73 is a quadratic residue
modulo p,

(ii) to find the least quadratic residue a > 1 and least positive quadratic non–residue b
modulo p of whichever of 370370384407407431 and 370370384407407539 is prime p. You
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might like to use your previous implementation of the Miller–Rabin test to find which, if
any, of these numbers is prime.

4. Consider the numbers

a1 = 23456789023456789923456789923454566777888990189,

a2 = 23456789023456789923456789923454566777888990190,

m1 = 2447952037112100847479213118326022843437705003126289,

m2 = 59545797598759584957498579859585984759457948579595794859456799501.

Use (LJ) to evaluate (
a1
m1

)
J

,

(
a2
m1

)
J

,

(
a1
m2

)
J

,

(
a2
m2

)
J

.

For those mj which are prime (Miller-Rabin is useful here) and those ai for which the
Legendre symbol is +1 solve (QC)

x2 ≡ ai (mod mj).

6.2 Probability

We have already used the term “probabilistic” informally in the previous section without
saying precisely what we mean.

Definition 6.1. Suppose that we have a finite set A of cardinality M , and a subset B
of cardinality N . In general we will suppose that the elements of B have some special
property that marks them out from those in the complement of B with respect to A. If
we pick an element of a ∈ A without fear or favour, then we define the probability that
a ∈ B as

N

M
.

It is also possible to define probability for elements of infinite sets, but then we have
to be concerned with how we measure the size of the sets, and this involves the much
more sophisticated subject of measure theory. Fortunately we have no need of that here.

Example 6.3. Let A = {1, 2, . . . ,M}, let q ∈ N and 0 ≤ r < q and let

B(q, r) = {a ∈ A : a ≡ r (mod q)}.

Then

N = cardB(q, r) = 1 +

⌊
M − r

q

⌋
.
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Now
M − r

q
− 1 < ⌊M − r

q
⌋ ≤ M − r

q

and so

−1 < −r
q
< N − M

q
≤ 1− r

q
< 1.

Therefore

− 1

M
+

1

q
<
N

M
<

1

q
+

1

M
.

Thus if M is large compared with q we can see that the probability that an element of a
is in B is close to

1

q

Well, that seemed pretty straightforward. But consider the following. Suppose we
have a class of with s students. What are the chances that there are two with the same
birthday? For simplicity assume there are no leap years. Well in the population at large
there are 3652 pairs of birthdays and of those pairs only 365 will be the same. Thus if
you pick a random pair of people you might conclude that only one in 365 pairs have the
same birthday so the class will have to be really large, with getting on for at least 365
members.

Well look at it this way, The number of possible configurations of birthdays for s
people is 365s - each person can have any one of 365 possibilities. Let A be the set of
all such configurations. One can think of the elements as being s-tuples (d1, d2, . . . , ds)
with each entry in the s-tuple being a number dj in the range {1, 2, . . . , 365}. Then
M = cardA = 365s

In how many of those s-tuples could all the entries (birthdays) be different? Let B
the corresponding subset of A. Then we are interested in the N = cardB. Well

N = 365(365− 1) . . . (365− s+ 1) (6.6)

Think of it this way. The first person’s birthday has 365 possibilities, i.e. the number of
choices for d1 is 365. The second person’s birthday d2 then only has 364 choices, and so
on. Thus the number of ways in which all the birthdays are different is the number of
s-tuples in which the entries are different and this is (6.6). Thus the probability that an
arbitrary member of A is in B is

ρ(s) =
N

M
=

(
1− 1

365

)(
1− 2

365

)
. . .

(
1− s− 1

365

)
.

Thus the probability that at least two members of the class share a birthday is

1− ρ(s) = 1−
(
1− 1

365

)(
1− 2

365

)
. . .

(
1− s− 1

365

)
.
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s ρ(s) s ρ(s)
21 .5563 . . . 22 .5243 . . .
23 .4927 . . . 24 .4616 . . .
25 .4313 . . . 26 .4017 . . .
27 .3731 . . . 28 .3455 . . .
29 .3190 . . . 30 .2936 . . .
31 .2695 . . . 32 .2466 . . .
33 .2250 . . . 34 .2046 . . .
35 .1856 . . . 36 .1678 . . .
37 .1512 . . . 38 .1359 . . .
39 .1217 . . . 40 .1087 . . .
41 .0968 . . . 42 .0859 . . .
43 .0760 . . . 44 .0671 . . .
45 .0590 . . . 46 .0517 . . .
47 .0452 . . . 48 .0394 . . .
49 .0342 . . . 50 .0296 . . .

The probability ρ(s) that a class of size s does not have two birthdays the same.

This shows that if the class has 23 members, then it is more likely than not that there
will be two people sharing a birthday. This class has 48 members so it is practically
certain that two members will have the same birthday. This is the birthday paradox and
its generalization plays an important rôle in establishing coincidences in computations.

We need to generalize this. Let D be the number of possible values for each entry in
the s-tuple - so we are now supposing that our year has D days! Then M = cardA = Ds

and N = cardB is
N = D(D − 1) . . . (D −N + 1)

so that the probability that there are no coincidences in the entries in an arbitrary s-tuple
is

N

M
=

(
1− 1

D

)(
1− 2

D

)
. . .

(
1− s− 1

D

)
.

Thus if this number is smaller than 0.5 we could conclude that amongst all the s-tuples
it is more likely that at least one s-tuple will have two entries the same than that all
s-tuples will have all entries different. In a particular case we might ask how large s has
to be in terms of D that this probability is smaller than some number σ where 0 < σ < 1,
so that

ρ(s) =
s−1∏
k=1

(
1− k

D

)
< σ.

Since it is easier to work with sums than products, we can rewrite this as

log
1

ρ(s)
=

s−1∑
k=1

log
1

1− k
D

> log
1

σ
.
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Of course it makes sense to suppose that s is somewhat smaller than D, and so we can
use the expansion for the logarithmic factor to obtain

log
1

ρ(s)
=

s−1∑
k=1

∞∑
h=1

kh

hDh
> log

1

σ
. (6.7)

We can rewrite the double sum over k and h as

=
∞∑
h=1

s−1∑
k=1

kh

hDh
.

When h = 1 the sum over k is
s(s− 1)

2D
and when h ≥ 2 all the terms are positive and the h-th one is at most

(s− 1)h+1

hDh
.

Thus if we suppose that
s−1∑
k=1

k

D
> log

1

σ
, (6.8)

then by (6.7)

log
1

ρ(s)
> log

1

σ
(6.9)

will certainly hold.
Summing the series in (6.8) gives

s(s− 1)

2D
> log

1

σ
. (6.10)

If we suppose also that D is large and s is smaller than D2/3, then the contribution from
the terms on the left of (6.7) with h ≥ 2 will be small and we will not lose much by
supposing the last inequality. Nevertheless we always have

log
1

ρ(s)
>
s(s− 1)

2D

Thus we see that, once s gets somewhat larger than
√
D, when we pick an s-tuple at

random we are quite likely to find two entries the same. Even for a number as small as
D = 365 this quite crude approximation shows that ρ(s) < 1

2
when s = 23.

The inequality (6.10) can be rearranged to give

exp

(
−s(s− 1)

2D2

)
< σ (6.11)



6.3. NOTES 99

and so if that holds, then we have

ρ(s) < σ. (6.12)

This reveals that the probability is dropping off quadratically in the exponent, and once
s gets past

√
2D drops off incredibly rapidly. Thus even if σ is taken to be quite small

one does not have to take s much bigger than
√
D to achieve the desired result. In other

words, if s is large compared with
√
D, then it will be almost certain that there will be

coincidences. By the way, some attacks on security systems take advantage of this and
we will make use of it later in one of the factoring attacks.

6.2.1 Exercises

1. The Martian year is approximately 668 Martian days. Compute the probability ρ(s)
for a class of s Martian students when 21 ≤ s ≤ 50. For which size class of Martians is
one more likely than not to have two Martians with the same birthday?

For a Mercurian the solar day appears to be longer than the solar year, so sadly on
Mercury the human concept of birthday does not make sense.

6.3 Notes

§1. There are excellent discussions of the Miller-Rabin test at https://kconrad.math.
uconn.edu/blurbs/ugradnumthy/millerrabin.pdf and https://en.wikipedia.org/

wiki/Miller-Rabin_primality_test. For example the former shows by a more sophist-
icated argument than the one we present that at least 3

4
of all reduced residues modulo n

are witnesses when n is composite. This is due independently to G. L. Miller, “Riemann’s
Hypothesis and tests for primality”, J. Computer and System Sciences 13(1976), 300–317
and L. Monier, “Evaluation and comparison of two efficient probabilistic primality test-
ing algorithms”, Theoretical Computer Science 12(1980), 97–108. See also M. O. Rabin,
“Probabilistic algorithm for testing primality”, J. Number Theory 12(1980), 128–138.

The advantage of the Miller-Rabin test is simplicity. The disadvantage is that it is
either probabilistic or depends for certainty on an unproved hypothesis. There are more
sophisticated tests, such as the Elliptic curve primality test which gives certainty but
for which the worst case runtime is not known or the Baillie-PSW primality test which
is probabilistic. There are some claims that the latter is deterministic but as far as I
am aware there is no published worst case runtime. For an overview of this subject see
https://en.wikipedia.org/wiki/Primality_test. It seems clear from the discussion
there that the only test which is deterministic and runs in reasonable time for very large
n is the Miller-Rabin test under the Riemann Hypothesis for Jacobi (and Legendre)
symbols. I have much greater confidence that this form of the Riemann hypothesis holds
than that there are no counterexamples to the other tests. I would add that even if the
hypothesis turned out to be false, Linnik’s theorems suggest that any counterexamples
to Miller-Rabin would be incredibly rare.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
https://en.wikipedia.org/wiki/Primality_test
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H. L. Montgomery, “Topics in Multiplicative Number Theory”, Lecture Notes in
Mathematics, Springer, vol. 227, 1971”, pages 123-125, shows for a more general class of
functions χ than the χ in (6.3) that on the Riemann Hypothesis for each χ we have∑

m≤N
m prime

(1−m/M)χ(m) logm < C1N
1/2 log r

where r is the modulus of χ, so 2 = p or q or pq in our cases. He also observes that if
χ(m) = 1 for allm ≤ N , then the sum is > C2N . The C1 and C2 are positive constants, so
it follows that there is a prime m < C(log r)2 with χ(m) ̸= 1 where C is another positive
constant. There is also an account of this on page 179 of H. L. Montgomery, “Ten
Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis”,
American Mathematical Society, 1994, p. 176. ISBN 0-8218-0737-4. Explicit values for
the constants are given by E. Bach, “Explicit bounds for primality testing and related
problems”, Mathematics of Computation, 55(191)(1990), 355–380.

It seems quite likely that (6.4) holds for N as small as C(logN) log logN .
§2 It is believed that the birthday paradox was first discovered by H. Davenport in

1927 and first published by R. Von Mises, “Über Aufteilungs- und Besetzungswahrschein-
lichkeiten”, Revue de la faculté des sciences de l’Université d’Istanbul 4(1939), 145-163,
reprinted in P. Frank, S. Goldstein, M. Kac, W. Prager, G. Szegö, G. Birkhoff, eds. Se-
lected Papers of Richard von Mises. Vol. 2. Providence, Rhode Island: Amer. Math.
Soc. pp. (1964), 313–334.



Chapter 7

Pollard’s Methods

7.1 Pollard rho

John Pollard, in the 1970s, created a number of different techniques for factoring large
integers. The Pollard rho is named for a way of representing the iterative process which
looks like the Greek lower case rho, ρ. Suppose you start from some object P0, and
successively compute P1, P2, P3, . . . and that sooner or later you find some pair j < k so
that Pj = Pk. Then Pj+1 = Pk+1 and so on. That is the sequence just repeats itself with
period k − j. We can represent this as a ρ, where P0 is at the base of the tail, and Pj is
where the tail meets the loop.

How this works to factorize n in the case of Pollard rho is that one chooses some
polynomial, normally irreducible over Q, like

f(x) = x2 + 1,

pick an x0 at random and successively compute

x1 = f(x0) (mod n),

x2 = f(x1) (mod n),

x3 = f(x2) (mod n),

...
...

...

Since there are only n residue classes, sooner or later there has to be a repetition. We
then check

GCD(xi − xj, n)

for each pair i, j and hope to find a non-trivial factor of n. There is no guarantee of
finding one quickly, but sometimes one is found. The usual procedure is to stop after a
certain amount of time and try a different polynomial f .

What is the theory? Suppose d is a proper divisor of n. For every i let yi ≡ xi
(mod d). Then yj ≡ xj ≡ f(xj−1) ≡ f(yj−1) (mod d). Thus sooner or later yj = yk
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for some j, k with j ̸= k. Then xj ≡ yj ≡ yk ≡ xk (mod d). Probably, and hopefully,
xj ̸= xk so d|GCD(xj − xk, n) and the GCD will differ from n.

How far should we expect to go before finding a solution? Given a prime p <
√
n

with p|n we are seeking different numbers in the same residue class modulo p. If we have
x1, x2, . . . , xs created at random, this is akin to the birthday paradox with a year that
has p days and a class size of s. Thus we can expect that with s not much bigger than√
p < n1/4 we will find a solution.

Example 7.1. Let n = 1133 and f(x) = x2 + 1. Of course 11|1133.
Take x0 = 2. Then x1 = 5, x2 = 26, x3 = 677, x4 = 598. Now

(x1 − x0, n) = (3, 1133) = 1,

(x2 − x0, n) = (24, 1133) = 1,

(x3 − x0, n) = (675, 1133) = 1,

(x4 − x0, n) = (596, 1133) = 1,

(x2 − x1, n) = (21, 1133) = 1,

(x3 − x1, n) = (672, 1133) = 1,

(x4 − x1, n) = (593, 1133) = 1,

(x3 − x2, n) = (651, 1133) = 1,

(x4 − x2, n) = (572, 1133) = 11.

Not very efficient, but it illustrates the idea.
The method can be speeded up as follows by an idea due to Floyd. We want to know

when we have reached the loop. Think of this as a race with two runners. If one is
running twice as fast as the other, the point at which the faster one comes round the loop
to overtake the slower one is the place where the tail meets the loop. With this in mind,
let z0 = x0 and then at the j-th step compute xj as above and

zj+1 ≡ f(f(zj)) (mod n).

Then
zj = x2j,

so we are computing xj and x2j simultaneously. If xj and xk with j < k are the smallest
pair with xj ≡ xk (mod d), let l = k − j. Then

xi ≡ xi+rl (mod d)

for every i ≥ j and every r ≥ 0.
Take i = l⌈j/l⌉ so that i ≥ j and r = ⌈j/l⌉. Then rl = i and so

xi ≡ x2i ≡ zi (mod d).

Thus we only need check
GCD(zi − xi, n) = GCD

and this really speeds up the computations. In the previous example.
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Example 7.2. Let n = 1133, f(x) = x2 + 1 and x0 = 2.
Then we compute

x1 = 5, z1 = 26, (z1 − x1, n) = (21, 1133) = 1,

x2 = 26, z2 = 598, (z2 − x2, n) = (572, 1133) = 11.

That is more like it!
A less obvious example

Example 7.3. Let n = 713, f(x) = x2 + 1 and x0 = 2.
Then we compute

x1 = 5, z1 = 26, (z1 − x1, n) = (21, 713) = 1,

x2 = 26, z2 = 584 (z2 − x2, n) = (558, 713) = 31.

There are a number of more sophisticated variants of this which are designed to speed
the algorithm up. Generally there is no rigorous proof but it is believed that the run
time is normally proportional to

√
p where p is the smallest prime factor of n and so in

the worst case, for a composite number the run time is proportional to n1/4.

7.1.1 Exercises

1. Write a programme or script to implement Pollard’s “ρ” (in Pari the exponentiation,
gcd and mod algorithms are already programmed in, although for large exponents it is
necessary to use the “binary expansion / successive squaring” method) and use it to
factorise 1231331, 9912409831, 950161333249.

7.2 Pollard p-1

Here we take a fairly large number K and hope that n has a prime factor p such that
none of the prime factors of p − 1 exceed K. To explain the method we will assume a
little more, namely that

p− 1|K!

Obviously we do not want to compute and store K!, which will be huge. Thus for some
a coprime with n we define x0 = a and successively compute

xk ≡ xkk−1 (mod n) and GCD(xk − 1, n) (k = 1, 2, 3, . . . , K),

stopping if the GCD reveals a proper factor of n. Since n is large we can expect that
xk ̸≡ 1 (mod n), but if p|n and p− 1|k!, so that k! = m(p− 1) for some m, then we have

xk ≡ ak! = (ap−1)m ≡ 1 (mod p).
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Example 7.4. Consider our old friend 1133. Let a = 2. Thus

x0 = 2, x1 = 22 = 4, x2 = 43 = 64,

x3 = 644 = 16777216 ≡ 719 (mod 1133), (718, 1133) = 1,

x4 = 7195 = 192, 151, 797, 699, 599 ≡ 1101 (mod 1133), (1100, 1133) = 11.

Now look at the less obvious example we considered above

Example 7.5. Let n = 713, and a = 2. Thus

x0 = 2, x1 = 22 = 4, x2 = 43 = 64,

x3 = 644 = 16777216 ≡ 326 (mod 713), (325, 713) = 1,

x4 = 3265 = 3, 682, 035, 745, 376 ≡ 311 (mod 713), (310, 713) = 31.

In practice for large numbers the elliptic curve method is faster and the Pollard p− 1
has largely disappeared. It uses the group structure of the powers of a modulo n. The
elliptic curve method is based on a similar basic idea but takes advantage of the richer
underlying group structure of elliptic curves.

7.2.1 Exercises

1. Write a programme or script to implement Pollard’s “p−1” (in Pari the exponentiation,
gcd and mod algorithms are already programmed in, although for large exponents it is
necessary to use the “binary expansion / successive squaring” method) and use it to
factorise 1231331 and 950161333249.



Chapter 8

The Quadratic Sieve

8.1 Prolegomenon

There have been many factorization algorithms developed with the intent of finding t, x, y
so that

tn = x2 − y2, (8.1)

going back to Fermat in the case t = 1 and Legendre for general t. One of the lines of
attack was through the use of continued fractions. It seems to have been periodically
rediscovered, for example by Kraitchik and, most notably, by Lehmer and Powers in 1931
and then developed further by Morrison and Brillhart in 1975 who showed that the advent
of modern computers made it a practical method. The idea is to consider the continued
fraction of

√
tn

√
tn = a0 +

1

a1 +
1

a2+···
.

This expansion is actually periodic, and truncating the expansion after k terms produces
an approximation

Ak
Bk

(8.2)

to
√
tn. In particular

A2
k − tnB2

k = (−1)k−1Rk (8.3)

where Rk is relatively small. By the way the approximation (8.2) turns out to be exactly
the approximation that would arise from an application of Dirichlet’s theorem, Theorem
2.2. Thus we have a solution to

A2
k ≡ (−1)k−1Rk (mod n).

Having computed (−1)k−1Rk for k = 0, . . . K one looks for a subset K of the k such that
the product ∏

k∈K

(−1)k−1Rk

105
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is a perfect square. Then for

R2 =
∏
k∈K

(−1)k−1Rk (mod n), A ≡
∏
k∈K

Ak (mod n)

one has

A2 ≡ R2 (mod n)

and hopefully GCD(A±R, n) provides a proper factor of n.
Things then developed very rapidly culminating in 1981 with what we now know as

the Quadratic Sieve (QS).
The expression in (8.3) on the left can be thought of as an indefinite binary quadratic

form

x2 − tny2.

Gauss had already studied such forms and had introduced the idea of “composition” of
forms. This lead Shanks to bring such ideas to the party, and gave arise to an alternative
version of the method usually known as SQUFOF (SQUareFOrmsFactorization). This
has a worse case runtime proportional to n1/4, so does not compete in that regard to the
other methods described here. However SQUFOF is sufficiently simple that it can be
implemented on a pocket calculator and the instructor of this course has a version on his
mobile phone.

8.2 The Quadratic Sieve

Recall that in Lehman’s method the aim is to find x, t so that

x2 − 4tn

is a perfect square. In the discussion above of the continued fraction approach we saw
that an alternative way to achieve this is to find x1, . . . , xr and y1, . . . , yr such that

yi ≡ x2i (mod n)

and

(x1 . . . xr)
2 ≡ y1 . . . yr = z2 (mod n).

However we want something better than trial and error.
Idea. Initially we consider

x2 − n

although eventually we may have to consider other polynomials. The data we garner from
this will ultimately enable us to find t, x such that x2 − tn is a perfect square. Suppose
that each of the yj has only small prime factors, say we have p ≤ B for every p|yj. For
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example take B = 7 and suppose we found y1 = 6, y2 = 15, y3 = 21, y4 = 35. Then we
would have

y1 = 21315070, y2 = 20315170, y3 = 20315071, y4 = 20305171

so we can associate with these the four vectors

v1 = ⟨1, 1, 0, 0⟩,v2 = ⟨0, 1, 1, 0⟩,v3 = ⟨0, 1, 0, 1⟩,v4 = ⟨0, 0, 1, 1⟩.

Then we want to find integers ej = 0 or 1 so that

e1v1 + e2v2 + e3v3 + e4v4 ≡ 0 (mod 2)

where 0 = ⟨0, 0, 0, 0⟩. Thus e1 = 0, e2 = e3 = e4 = 1 will do and

y01y
1
2y

1
3y

1
4 = 15.21.35 = (3.5.7)2 = (105)2.

Thus we can find perfect squares by vector addition. In other words solving linear equa-
tions. In practice this in turn means Gaussian elimination.

Definition 8.1. Given a positive real number B we say that an integer z is B-factorable
when every prime factor p of z satisfies p ≤ B. To emphasise the fact that in our situation
only certain primes (but also −1) may occur we will also use the term P-factorable where
P is a set of primes, probably augmented by −1.

Note that the term B-smooth is commonly used instead. The word “smooth” has
many better uses in mathematics.

Algorithm 8.1 (QS.). We are given an odd number n which we know to be composite
and not a perfect power. The objective is to find a non–trivial factor of n by first finding
x and y so that x2 ≡ y2 (mod n) and then checking gcd(x± y, n)..
1. Initialization.

1.1. Pick a number B as the upper bound for the primes in the factor base
P. Theory says take B =

⌈
L(n)1/2

⌉
where L(n) = exp(

√
log n log log n),

but in practice a B somewhat smaller works well. Also, adding extra primes
suggested by the sieving process can be useful and if one uses the wrinkle in
5.3 below, then the prime p is adjoined to the factor base P.

1.2. Set p0 = −1, p1 = 2 and find the odd primes p2 < p3 < . . . < pK ≤ B

such that

(
n

pk

)
L

= 1. Then P = {p0, p1, . . . , pK} and cardP = K + 1 The

Algorithm 5.1 LJ is useful here.

1.3. For k = 2, . . . , K find the solutions ±tpk to x2 ≡ n (mod pk) by using
Algorithms 5.2 and 5.3, QC357/8, QC1/8.

2. Sieving.
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2.1. Let N = ⌈
√
n⌉. Sieve the sequence x2 − n with x = N + j, j =

0,±1,±2, . . . until one has obtained a list of at least J ≥ K + 2 B-factorable
x2 − n and their factorizations (K + 2 is somewhat arbitrary and can be
increased if necessary but in the first example below is K + 1 instead). This
could be done by using a matrix, with initially B2 columns (B2 is somewhat
arbitrary and can be increased if necessary) so that each column is a K + 3
dimensional vector in which the first entry is x, the second is x2 − n, and the
k + 3–rd entry will be the exponent of pk in x2 − n.

2.2. For each prime pk in the factor base divide out all the prime factors pk
in each entry x2 − n with x ≡ ±tpk (mod pk), recording the exponent in the
k + 3-rd entry in the associated j-th vector. Once the primes start to grow
this speeds things up significantly.

2.3. If the second entry in a column vector has reduced to 1, then x2−n is B–
factorable. If it has not completely factored then one can discard that column,
or at least put it aside in case one needs to extend the factor base later. Theory
tells us that we will need at least K + 1, and generally somewhat more, say
J , completely factored, which is the reason for taking so many columns in the
first place.

3. Linear Algebra.

3.1. Form a (K + 1) × J matrix M with the rows being formed by the 3–rd
through K+3–rd entries of the row vectors arising in 2.2, but with the entries
reduced modulo 2. It is convenient to label columns as j = 1 through J and
the corresponding x as x1 through xJ .

3.2. Use linear algebra (Gaussian elimination, for example) to solve

Me = 0 (mod 2)

where e is a J dimensional vector of 0s and 1s (not all 0!). It is likely that one
will need more than one solution before finding a factorization of n. Gaussian
elimination or standard linear algebra packages should give a basis for the
space of all solutions.

4. Factorization.

4.1. Compute x = xe11 x
e2
2 . . . xeJK+2 modulo n and

y =
√
(x21 − n)e1(x22 − n)e2 . . . (x2J − n)eJ

modulo n. The value of x can be computed by using the first entries in the
column vectors in the original matrix and the square root in the definition of
y should be computed using the factorizations in the body of that matrix. Note



8.2. THE QUADRATIC SIEVE 109

that all multiplications should be performed modulo n so nothing bigger than
n2 will occur.

4.2. Compute l = gcd(x− y, n), m = gcd(x+ y, n).

4.3. Return l, m. 4.4. If necessary repeat for all solutions e until a non-
trivial factor found.

5. Aftermath.

5.1. If no proper factor of n found, try one or more of the following.

5.2. Extend the sieving in 2.1 to obtain more e and pairs x, y. As a matter
of policy the original sieving probably should be conducted so as to obtain K ′

pairs with K ′ somewhat more than K + 2.

5.3. Use another polynomial in place of x2 − n, or rather, be a bit more
cunning about the choice of the x in 2.1. Choose a large prime p for which
b2−n ≡ 0 (mod p) is soluble, and compute b. Then (px+b)2−n ≡ 0 (mod p)
and x can be chosen so that f(x) = ((px + b)2 − n)/p is comparatively small
since p is large, so the sieving proceeds relatively speedily, there is a better
chance of a complete factorization of f(x), and we only have to augment the
factor base with the prime p.

The most time consuming part of this algorithm is the sieving. Note that just re-
stricting the x to x ≡ ±tk already speeds it up considerably but this is still usually the
slowest part. The linear algebra can also be speeded up by various techniques, especially
those developed for dealing with sparse matrices.

Although the numbers in the following example are much smaller than would occur
in a practice the example does illustrate the complexity of the basic quadratic sieve.

Example 8.1. Let n = 9487 and take the sieving limit B = 30. We first need to check
which primes p ≤ 30 will occur in the method. Thus for each odd prime p ≤ 30 we need
to ascertain whether n is a QR or a QNR modulo p.(

9487

3

)
L

=

(
1

3

)
L

= 1,

(
9487

13

)
L

=

(
10

13

)
L

=

(
36

13

)
L

= 1,(
9487

5

)
L

=

(
2

5

)
L

= −1,

(
9487

17

)
L

=

(
1

17

)
= 1,(

9487

7

)
L

=

(
2

7

)
L

= 1,

(
9487

19

)
L

=

(
6

19

)
L

=

(
25

19

)
L

= 1,(
9487

11

)
L

=

(
5

11

)
L

= 1,

(
9487

23

)
L

=

(
11

23

)
L

= −
(
23

11

)
L

= −1,(
9487

29

)
L

=

(
4

29

)
L

= 1.
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Thus we will take our set of primes to be P = {−1, 2, 3, 7, 11, 13, 17, 19, 29}. Then we can
compute

t3 = ±1, t7 = ±3, t11 = ±4, t13 = ±5, t17 = ±1, t19 = ±5, t29 = ±2.

Now for a range of values of x near
√
n ≈ 97 we factorise f(x) = x2−n. At this stage

we throw away the x which do not completely factor in our factor base.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x 81 84 85 89 95 97 98 100 101 103

f(x) −2926 −2431 −2262 −1566 −462 −78 117 513 714 1122
−1 2926,1 2431,1 2262,1 1566,1 462,1 78,1 117,0 513,0 714,0 1122,0
2 1463,1 2431,0 1131,1 783,1 231,1 39,1 117,0 513,0 357,1 561,1
3 1463,0 2431,0 377,1 29,3 77,1 13,1 13,2 19,3 119,1 187,1
7 209,1 2431,0 377,0 29,0 11,1 13,0 13,0 19,0 17,1 187,0
11 19,1 221,1 377,0 29,0 1,1 13,0 13,0 19,0 17,1 17,1
13 19,0 17,1 29,1 29,0 1,0 1,1 1,1 19,0 17,0 17,0
17 19,0 1,1 29,0 29,0 1,0 1,0 1,0 19,0 1,1 1,1
19 1,1 1,0 29,0 29,0 1,0 1,0 1,0 1,1 1,0 1,0
29 1,0 1,0 1,1 1,1 1,0 1,0 1,0 1,0 1,0 1,0

In the table above, in the column below each prime I have included the exponent of the
prime which occurs in the factorisation and the residual factor after that prime has been
factored out. It might also be handy to include a column beween the first and second
ones which contains the values of tpj .

I have included one such value, x = 82, below, so that you can see what happens. If
n is proving awkward to factorise, one might go back and check to see if there are primes
outside the factor base which occur in multiple places and then add them to the factor
base. For example, f(92) and f(94) would completely factorise if we included the prime
31 in the factor base.

x 82 92 94
f(x) −2763 −1023 −651
−1 2763,1 2763,0 651,1
2 2763,0 1023,1 651,0
3 307,2 341,1 217,1
7 307,0 341,0 31,1
11 307,0 31,0 31,0
13 307,0 31,0 31,0
17 307,0 31,0 31,0
19 307,0 31,0 31,0
29 307,0 31,0 31,0
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Let v(x) denote the vector of exponents in the factorization of f(x), so that

v(85) = ⟨1, 1, 1, 0, 0, 1, 0, 0, 1⟩,
v(89) = ⟨1, 1, 3, 0, 0, 0, 0, 0, 1⟩,
v(98) = ⟨0, 0, 2, 0, 0, 1, 0, 0, 0⟩,

Then
v(85) + v(89) + v(98) = ⟨2, 2, 6, 0, 0, 2, 0, 0, 2⟩.

and the entries in this are all even. Thus

852 × 892 × 982 ≡ (852 − n)(892 − n)(982 − n) (mod 9487)

7413702 ≡ (−1× 2× 33 × 13× 29)2 = 203582 (mod 9487).

Unfortunately

(741370 + 20358, 9487) = 1,

(741370− 20358, 9487) = 9487.

We also have
v(81) + v(95) + v(100) = ⟨2, 2, 4, 2, 2, 0, 0, 2, 0⟩,

so that
812 × 952 × 1002 ≡ (−1× 2× 32 × 7× 11× 19)2 (mod 9487)

which gives
7695002 ≡ 263342 (mod 9487)

and

(769500 + 26334, 9487) = 179,

(769500− 26334, 9487) = 53.

There is a lot to take away from this.
1. We need to use the theory of quadratic residues, via the Legendre symbol and

quadratic reciprocity to see which primes to include in the factor base.
2. We then need to sieve out the x, i.e remove those x for which f(x) does not

completely factor in the factor base, and then to store the vector of exponents for each x
which survives. This can take a lot of memory.

3. Whilst not apparent in the simple example above, we will need to work hard to find
linear combinations of the vectors of exponents in which all the entries are even. This
will involve some form of Gaussian elimination. The complexity is somewhat reduced by
the fact that we only need to do this modulo 2, but it will still also require quite a lot of
memory.

Going back to the table
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x 81 84 85 89 95 97 98 100 101 103

f(x) −2926 −2431 −2262 −1566 −462 −78 117 513 714 1122
−1 2926,1 2431,1 2262,1 1566,1 462,1 78,1 117,0 513,0 714,0 1122,0
2 1463,1 2431,0 1131,1 783,1 231,1 39,1 117,0 513,0 357,1 561,1
3 1463,0 2431,0 377,1 29,3 77,1 13,1 13,2 19,3 119,1 187,1
7 209,1 2431,0 377,0 29,0 11,1 13,0 13,0 19,0 17,1 187,0
11 19,1 221,1 377,0 29,0 1,1 13,0 13,0 19,0 17,1 17,1
13 19,0 17,1 29,1 29,0 1,0 1,1 1,1 19,0 17,0 17,0
17 19,0 1,1 29,0 29,0 1,0 1,0 1,0 19,0 1,1 1,1
19 1,1 1,0 29,0 29,0 1,0 1,0 1,0 1,1 1,0 1,0
29 1,0 1,0 1,1 1,1 1,0 1,0 1,0 1,0 1,0 1,0

we can extract the exponents of each prime thus

M =



1 1 1 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 1 1
0 0 1 3 1 1 2 3 1 1
1 0 0 0 1 0 0 0 1 0
1 1 0 0 1 0 0 0 1 1
0 1 1 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0


.

Then we wish to find solutions to

Me ≡ 0 (mod 2).

other than 0. In other words we want the exponents in the prime factorisation of

f(x1)
e1 . . . f(xK)

eK

to be even in a non-trivial way. The standard way of doing this is through Gaussian
elimination, and it suffices to perform it modulo 2. Below I have listed the successive row
operations, beginning with using the first row to eliminate the first entries in the other
rows, and then using successive rows to eliminate the entries in the column corresponding
to their leading entry.

1 1 1 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 1 1
0 0 1 3 1 1 2 3 1 1
1 0 0 0 1 0 0 0 1 0
1 1 0 0 1 0 0 0 1 1
0 1 1 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0


,



1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 1 1 1
0 1 1 1 0 1 0 0 1 0
0 0 1 1 0 1 0 0 1 1
0 1 1 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1
0 1 1 1 1 1 0 1 0 0
0 0 1 1 0 0 0 0 0 0


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1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 1 1 1
0 0 1 1 0 1 0 0 0 1
0 0 1 1 0 1 0 0 1 1
0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 1 1 1
0 0 1 1 0 0 0 0 0 0


,



1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 1 1 1
0 0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 1 0 0
0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1




1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 1 1 1
0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1


.

It is then arranged into echelon form and the leading entries used successively to remove
any entries above

1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 1 1 1
0 0 0 1 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,



1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 1 1 1 1 0 1 0 1
0 0 0 1 1 0 1 1 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




1 1 1 1 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
0 0 1 1 1 0 0 1 0 0
0 0 0 1 1 0 1 1 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,



1 1 1 1 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


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1 1 1 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,



1 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


Thus we find that

e1 + e8 ≡ 0 (mod 2),

e2 + e10 ≡ 0 (mod 2),

e3 + e7 ≡ 0 (mod 2),

e4 + e7 ≡ 0 (mod 2),

e5 + e8 ≡ 0 (mod 2),

e6 + e10 ≡ 0 (mod 2),

e9 ≡ 0 (mod 2).

Thus taking e7, e8 and e10 as the independent variables we see that(
f(x3)f(x4)f(x7)

)e7(f(x1)f(x5)f(x8))e8(f(x2)f(x6)f(x10))e10
is always a perfect square. The choices e7 = 1, e8 = e10 = 0 and e8 = 1, e7 = e10 = 0
correspond to the solutions used above. The solution e10 = 1, e7 = e8 = 0 does not give
a factorization. The reader is welcome to explore other choices.

Here is another example with a somewhat larger n.

Example 8.2. Let n = 5479879 and take the sieving limit B = 50. We first need to
check which primes p ≤ 50 will occur in the method. Thus for each odd prime p ≤ 50 we
need to ascertain whether n is a QR or a QNR modulo p. Running the algorithm LJ we
obtain a factor base

P = {−1, 2, 3, 5, 11, 31, 47}.
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We have
√
n ≈ 2340, but for larger numbers such as n it is harder to obtain complete

factorisations of f(x) = x2−n. Either the range for x has to be increased, or alternatively
extend the factor base P.

x1 x2 x3 x4 x5 x6
x 2198 2225 2252 2373 2383 2477

f(x) −648675 −529254 −408375 151250 198810 655650
−1 1 1 1 0 0 0
2 0 1 0 1 1 1
3 3 7 3 0 2 2
5 2 0 3 4 1 2
11 0 2 2 2 0 0
31 2 0 0 0 0 1
47 0 0 0 0 2 1

Now we extract the parity of the exponents for each prime and form the matrix

M =



1 1 1 0 0 0
0 1 0 1 1 1
1 1 1 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1


.

We now apply Gaussian elimination and obtain

M =



1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Thus we find that

e1 + e4 ≡ 0 (mod 2),

e2 + e4 + e5 ≡ 0 (mod 2),

e3 + e5 ≡ 0 (mod 2),

e6 ≡ 0 (mod 2),
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Thus taking e4 and e5 as the independent variables we see that

e1 ≡ e4 (mod 2),

e2 ≡ e4 + e5 (mod 2),

e3 ≡ e5 (mod 2),

e6 ≡ 0 (mod 2),

and so each of

f(x1)f(x2)f(x4),

f(x2)f(x3)f(x5),

is a perfect square. We have

x1 × x2 × x4 = 2198× 2225× 2373 = 11605275150

and

f(x1)f(x2)f(x4) = (−1)2×22×310×56×114×312 = (2×35×53×112×31)2 = 2278732502

Now

11605275150− 227873250 = 11377401900,

1105275150 + 227873250 = 11833148400,

(11377401900, n) = (11377401900, 5479879) = 5431

and
(11833148400, 5479879) = 1009.

We can also check to see what happens with the second relationship. We have

x2 × x3 × x5 = 2225× 2252× 2383 = 11940498100

and

f(x2)f(x3)f(x5) = (−1)2×22×312×54×114×472 = (2×36×52×112×47)2 = 2072911502

Then

11940498100− 207291150 = 11733206950,

11940498100 + 207291150 = 12147789250,

(11733206950, 5479879) = 1009

and
(12147789250, 5479879) = 5431.
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8.3 Note on Gaussian Elimination

As part of the quadratic sieve we need to solve systems of linear congruences of the kind

a11e1 + a12e2 + · · ·+ a1mem ≡ 0 (mod 2),

a21e1 + a22e2 + · · ·+ a2mem ≡ 0 (mod 2),

...
...

al1e1 + al2e2 + · · ·+ almem ≡ 0 (mod 2).

(8.4)

In our situation the ajk can be taken to be 1 or 0 which simplifies computation. When
n, the number to be factored, is large the matrices will be sparse, i.e. the majority of
the entries will be 0 and then there are more efficient methods than Gaussian elimina-
tion. However, for the purposes of the exposition in this chapter Gaussian elimination is
adequate, and has the merit of being straightforward.

We can write this more succinctly in matrix notation as

Ae = 0

where

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm


and

e =


e1
e2
...
em


and

0 =


0
0
...
0

 .

The first observation that can be made is that it is immaterial as to the order in which
we write the equations so at any state we can interchange them if it is convenient to do
so. Clearly if we have a row of zeros, then we can remove that row and make the matrix
smaller. Likewise if any column is all zeros we can remove that column and give any
value we like to the corresponding variable, that is treat it as a free variable. Thus we
can suppose initially that every column has a non-zero entry. We can then rearrange the
rows so that a11 = 1. This is sometimes called a pivot.
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Our second observation is that in (8.4) we can take one equation and subtract it from
another. This is equivalent to taking the corresponding row in the matrix and subtracting
it from the second corresponding row. When Gaussian elimination is applied generally
in the real world one can even take real multiples of one row from another, but in this
world we have the much simple environment of having only zeros and ones. Note that if
subtraction gives −1 this is the same as 1.

We now take the first row and subtract it from every row with a1k = 1. Thus the new
matrix will have a11 = 1 and all the entries below it 0.

Now consider the 
1 a12 · · · a1m
0 a22 · · · a2m

0
...

...
0 al2 · · · alm

 .

If all the aj2 with 2 ≤ j ≤ l are 0, then we move on to the next column. If at least one of
the aj2 is 1 we move that row to the second row and then subtract it from all the other
rows with aj2 = 1 and j ≥ 2. We continue in this way until we have reduced the matrix
to echelon form 

1 a12 a13 a14 · · · a1m
0 1 a23 a24 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · · ...
...

...

 .

Note that the matrix might well have zeros on the diagonal from some point on. If so
some of the rows at the bottom of the matrix are likely to consist of all zeros.

The first 1 in a row is sometimes called a pivot. Starting from the bottom of the
matrix we now use these pivots to remove any non-zero entry above the pivot. Thus the
last matrix would take on the shape

1 0 a13 0 · · · a1m
0 1 a23 0 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · · ...
...

...

 .

This is called reduced echelon form.

What we see now is that if ajk is a pivot, then the variable ej only occurs in the j-th
row, since all the entries above and below are 0. Thus ej is determined uniquely by the
other (non-pivot) variables, so can be considered as dependent variables. In other words
we can take the non-pivot variables, which can be considered independent variables, to
be anything we please (0 or 1) and the pivot variables will be determined by them.
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Thus in Example 8.1 above we see that the reduced echelon form is

1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


and e1, e2, e3, e4, e5, e6 and e9 are dependent variables and the rest can be chosen at
random.

8.4 Notes

§1. The history of factorization methods related to searching for t, x, y with x2 − y2 = tn
is complicated. Apart from Legendre in the eighteenth century there is F. W. Lawrence,
“Factorisation of numbers”, Messenger of Math., 24(1895), 100-109 and Kraitchik in the
1920s. Continued fraction expansions seemed to have been used explicitly first by D.
H. Lehmer and R. E. Powers, “On Factoring Large Numbers”, Bull. A. M. S. 37(1931),
770–776, but further developments had to await the widespread use of electronic com-
puters. For a further analysis of the continued fraction method see J. Brillhart and M. A.
Morrison, “A Method of Factoring and the Factorization of F7”, Mathematics of Com-
putation, 29(1975), 183-205. Lehman’s method described in §2.3 seems to have been
discovered independently and is similar ro Lawrence’s method listed above, and avoids
continued fraction expansions. As noted in §2.3 the theoretical underpinning can be made
to depend instead on Dirichlet’s theorem on diophantine approximation.

Schroeppel noticed, but did not publish, that the Brillhart-Morrison method had a
sub-exponential run time and that it could be improved by introducing sieving ideas in
place of continued fraction expansions. Then in 1981 J. D. Dixon, “Asymptotically fast
factorization of integers”, Math. Comp. 36 (153)(1981), 255–260 created the prototype
quadratic sieve using a factor base, and in 1982 Pomerance moulded it in to the form
which we examine here. See C. Pomerance, “A Tale of Two Sieves”, Notices of the AMS,
43(12)(1996), 1473–1485. It was also in the 1970s that Shanks explored in a different
direction. There is a full analysis of SQUFOF in J. E. Gowers and S. S. Wagstaff,
“Square Form Factorization”, Mathematics of Computation, 77(2008), 551-588. Just to
illustrate the long history of rediscovery in this area, apparently in 1858 V. Šimerka had
used a method similar to SQUFOF to obtain the factorization

11111111111111111 = 2071723× 5363222357.

§2 The barbarism B-smooth is commonly used to mean B-factorable.
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Chapter 9

Arithmetical Functions

9.1 Introduction

A major consideration in assessing factorisation and primality testing algorithms is the
ability to judge and compare possible run times. Underpinning this is some knowledge
of the growth patterns of common arithmetic functions and a familiarity with the ba-
sic techniques used to elucidate the way in which primes are distributed under various
constraints.

It is convenient to make the following definition.

Definition 9.1. Let A denote the set of arithmetical functions, that is the functions
defined by

A = {f : N → C}.

Of course the range of any particular function might well be a subset of C, such as R
or Z. There are quite a number of important arithmetical functions. Some examples are

Definition 9.2 (The divisor function). The number of positive divisors of n.

d(n) =
∑
m|n

1.

Definition 9.3 (The Möbius function). This is a more peculiar function. It is defined
by

µ(n) =

{
(−1)k if n is a product of k distinct primes,

0 if there is a prime p such that p2|n.

It is also convenient to introduce three very boring functions.

Definition 9.4 (The Unit).

e(n) =

{
1 (n = 1),

0 (n > 1).

121



122 CHAPTER 9. ARITHMETICAL FUNCTIONS

Definition 9.5 (The One).

1(n) = 1 for every n.

Definition 9.6 (The Identity).
N(n) = n.

Two other functions which have interesting structures but which we will say less about
at this stage are

Definition 9.7 (The primitive character modulo 4). We define

χ1(n) =

{
(−1)

n−1
2 2 ∤ n,

0 2|n.

Similar functions we have already met are Euler’s function ϕ, the Legendre symbol
and its generalization the Jacobi symbol( n

m

)
J
.

Here we think of it as a function of n, keeping m fixed, but we could also think of it as a
function of m keeping n fixed.

Definition 9.8 (Sums of two squares). We define r(n) to be the number of ways of
writing n as the sum of two squares of integers.

Example 9.1. For example, 1 = 02 + (±1)2 = (±1)2 + 02, so r(1) = 4, r(3) = r(6) =
r(7) = 0, r(9) = 4, 65 = (±1)2 + (±8)2 = (±4)2 + (±7)2 so r(65) = 16.

The functions d, ϕ, e, 1, N , χ1,
( ·
m

)
J
have an important property. That is that they

are multiplicative. We already discussed this in connection with Euler’s function and the
Legendre and Jacobi symbols. Here is a reminder.

Definition 9.9. An arithmetical function f which is not identically 0 is multiplicative
when it satisfies

f(mn) = f(m)f(n) (9.1)

whenever (m,n) = 1. Let M denote the set of multiplicative functions. If (9.1) holds for
all m and n, then we say that f is totally multiplicative.

The function r(n) is not multiplicative, since r(65) = 16 but r(5) = r(13) = 8. Indeed
the fact that r(1) ̸= 1 would contradict the next theorem. However it is true that r(n)/4
is multiplicative, but this is a little trickier to prove.

Theorem 9.1. Suppose that f ∈ M. Then f(1) = 1.
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Proof. Since f is not identically 0 there is an n such that f(n) ̸= 0. Hence f(n) =
f(n× 1) = f(n)f(1), and the conclusion follows.

It is pretty obvious that e, 1 and N are in M, and it is actually quite easy to show

Theorem 9.2. We have µ ∈ M.

Proof. Suppose that (m,n) = 1. If p2|mn, then p2|m or p2|n, so µ(mn) = 0 = µ(m)µ(n).
If

m = p1 . . . pk, n = p′1 . . . p
′
l

with the pi, p
′
j distinct, then

µ(mn) = (−1)k+l = (−1)k(−1)l = µ(m)µ(n).

The following is very useful.

Theorem 9.3. Suppose the f ∈ M, g ∈ M and h is defined for each n by

h(n) =
∑
m|n

f(m)g(n/m).

Then h ∈ M.

Proof. Suppose (n1, n2) = 1. Then a typical divisor m of n1n2 is uniquely of the form
m1m2 with m1|n1 and m2|n2. Hence

h(n1n2) =
∑
m1|n1

∑
m2|n2

f(m1m2)g(n1n2/(m1m2))

=
∑
m1|n1

f(m1)g(n1/m1)
∑
m2|n2

f(m2)g(n2/m2).

This enables us to establish an interesting property of the Möbius function.

Theorem 9.4. We have ∑
m|n

µ(m) = e(n).

Proof. By the definition of 1 the sum here is∑
m|n

µ(m)1(n/m)

and so by the previous theorem it is in M. Moreover if k ≥ 1, then∑
m|pk

µ(m) = µ(1) + µ(p) = 1− 1 = 0
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9.1.1 Exercises

1. Show that ∑
m|n

d(m)

2

=
∑
m|n

d(m)3.

2. (i) Show that ∑
l|(m,n)

µ(l)

is 1 when (m,n) = 1 and is 0 otherwise.
(ii) Prove that

n∑
m=1

(m,n)=1

m =
1

2
nϕ(n) when n > 1.

(iii) Suppose that n ≥ 2 and n has the distinct prime factors p1, p2, . . . , pr. Show that

n∑
m=1

(m,n)=1

m2 =
1

3
ϕ(n)n2 +

1

6
(−1)rϕ(n)p1p2 . . . pr.

3. A squarefree number is one which has no square other than 1 dividing it. Let s(n)
denote the characteristic function of the squarefree numbers.

(i) Prove that

s(n) =
∑
m2|n

µ(m).

(ii) Prove that s(n) is multiplicative.

4. A positive integer n is perfect when σ(n) = 2n.
(i) (Euclid) Prove that if 2(l+1) − 1 is prime, then 2l(2l+1 − 1) is perfect.
(ii)(Euler) Suppose that n = 2lm, m odd, is an even perfect number. Prove that

σ(m) = m+ m
2l+1−1

. Prove that m has exactly two positive divisors and so is prime, and

that m = 2l+1 − 1.
(iii) Prove that there is no squarefree perfect number apart from 6.

5. Show that the only totally multiplicative function f for which
∑

m|n f(m) is totally
multiplicative is the unit e.

6. Prove that for every positive integer n,∑
m|n

µ(m)d(m) = (−1)ω(n),

where ω(n) is the number of different prime factors of n, as defined in §7.5.
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7. Show that the sum of all the primitive roots modulo p lies in the residue class µ(p− 1)
modulo p.

8. Let k ∈ N. Prove that there are infinitely many n such that µ(n + 1) = µ(n + 2) =
· · · = µ(n+ k).

9. (i) Prove that there is an arithmetic function f such that for every natural number n
we have µ(n) =

∑
m|n f(m).

(ii) Prove that f multiplicative, and give a formula for f(pk) when p is prime.

10. Show that every odd number n can be written as the difference of two squares,
n = x2 − y2. How many different choices for the integers x and y are there?

11. Show that if n is a natural number, then∏
m|n

m = n
1
2
d(n).

12. Suppose that f : N → Z is a totally multiplicative function with f(n) = 0 or ±1.
Prove that ∑

m|n

f(m) ≥ 0

and ∑
m|n2

f(m) ≥ 1.

13. (a) Prove that if x ≥ 1, then ∑
n≤x

µ(n)
⌊x
n

⌋
= 1.

Here ⌊∗⌋ is defined in Definition 1.5.
(b) Prove that

−1 + 1/x ≤
∑
n≤x

µ(n)

n
≤ 1 + 1/x.

In fact we know that
∞∑
n=1

µ(n)

n
= 0,

but this is equivalent to the prime number theorem in the sense that if follows from the
prime number theorem and there is a relatively simple proof that it implies the prime
number theorem.

14.[Schneider] Suppose that |x| < 1. (i) Prove that

−
∞∑
k=1

ϕ(k)

k
log(1− xk) =

x

1− x
.
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(ii) Prove that

−
∞∑
k=1

µ(k)

k
log(1− xk) = x.

(iii) Prove that if ω =
√
5−1
2

, so that 1/ω is the golden ratio, then

∞∑
k=1

µ(k)− ϕ(k)

k
log(1− ωk) = 1.

15. Prove that ∑
m|n

(−1)mϕ(n/m) =

{
−n (n odd),

0 (n even).

9.2 Dirichlet Convolution

labelsec:nine2
Theorem 9.3 suggests a general way of defining new functions.

Definition 9.10. Given two arithmetical functions f and g we define the Dirichlet
convolution f ∗ g to be the function defined by

(f ∗ g)(n) =
∑
m|n

f(m)g(n/m).

Note that this operation is commutative because

f ∗ g(n) =
∑
m|n

f(m)g(n/m) =
∑
m|n

g(n/m)f(m)

and the mapping m↔ n/m is a bijection.
It is also quite easy to see that the relation is associative

(f ∗ g) ∗ h = f ∗ (g ∗ h).

To see this write the left hand side as

∑
m|n

∑
l|m

f(l)g(m/l)

h(n/m)

and interchange the order of summation and replace m by kl, so that kl|n, i.e l|n and
k|n/l. Thus the above is∑

l|n

f(l)
∑
k|n/l

g(k)h
(
(n/l)/k

)
= f ∗ (g ∗ h)(n).
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Dirichlet convolution has some interesting properties.
1. f ∗ e = e ∗ f = f for any f ∈ A, so e is really acting as a unit.
2. µ ∗ 1 = 1 ∗ µ = e, so µ is the inverse of 1, and vice versa.
3. Theorem 9.3 tells us that if f ∈ M and g ∈ M, then f ∗ g ∈ M.
4. Theorem 3.2 says that ϕ ∗ 1 = N .
5. d = 1 ∗ 1, so d ∈ M. Hence
6. d(pk) = k + 1 and d(pk11 . . . pkrr ) = (k1 + 1) . . . (kr + 1).

Theorem 9.5 (Möbius inversion I). Suppose that f ∈ A and g = f ∗ 1. Then f = g ∗ µ.

Proof. We have

g ∗ µ = (f ∗ 1) ∗ µ = f ∗ (1 ∗ µ) = f ∗ e = f.

Theorem 9.6 (Möbius inversion II). Suppose that g ∈ A and f = g ∗ µ, then g = f ∗ 1.

The proof is similar.

Theorem 9.7. We have ϕ = µ ∗N and ϕ ∈ M. Moreover

ϕ(n) = n
∑
m|n

µ(m)

m
= n

∏
p|n

(
1− 1

p

)

This gives new proofs of Corollary 3.6 and Theorem 3.7.

Proof. By property 4. and Theorem 9.5 we have

ϕ = N ∗ µ = µ ∗N.

Therefore, by property 3 and Theorem 9.2, ϕ ∈ M. Moreover ϕ(pk) = pk − pk−1 and we
are done.

Theorem 9.8. Let D = {f ∈ A : f(1) ̸= 0}. Then ⟨D, ∗⟩ is an abelian group.

Proof. Of course e is the unit, and closure is obvious. We already checked commutativity
and associativity. It remains, given f ∈ D, to construct an inverse. Define g iteratively
by

g(1) = 1/f(1)

g(n) = −
∑
m|n
m>1

f(m)g(n/m)/f(1)

and it is clear that f ∗ g = e.
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9.2.1 Exercises

1. We define σ(n) for n ∈ N to be the sum of the divisors of n,

σ(n) =
∑
m|n

m.

(i) Prove that σ is a multiplicative function.
(ii) Evaluate σ(1050).
(iii) Prove that ∑

m|n

ϕ(m)σ(n/m) = nd(n).

(iv) Show that if σ(n) is odd, then n is a square or twice a square.
(v) Prove that ∑

m|n

µ(m)σ(n/m) = n.

(vi) Prove that ∑
m|n

µ(n/m)
∑
l|m

µ(l)σ(m/l) = ϕ(n).

2. (cf Hille (1937)) Suppose that f(x) and F (x) are complex-valued functions defined on
[1,∞). Prove that

F (x) =
∑
n≤x

f(x/n)

for all x if and only if

f(x) =
∑
n≤x

µ(n)F (x/n)

for all x.

3. Show for each positive integer k that there is a unique arithmetic function ϕk such that∑
m|n ϕk(m) = nk. Obtain a formula for ϕk(n) and show that ϕk(n) is multiplicative.

4. Evaluate h(n) =
∑

m|n(−1)mµ(n/m).

5. Suppose that the arithmetical function η(n) satisfies
∑

m|n η(m) = ϕ(n). Show that

η(n) is multiplicative and evaluate η(pk).

6. Let g(n) denote the number of ordered k-tuples of integers x1, x2, . . . , xk such that
1 ≤ xj ≤ n (j = 1, 2 . . . , k) and

(x1, x2, . . . , xk, n) = 1,

and let G(n) =
∑

m|n g(m). Prove that G(n) = nk and that

g(n) = nk
∏
p|n

(
1− p−k

)
.
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7. This question investigates whether there exists an arithmetic function θ such that
θ ∗ θ = µ and θ(1) ≥ 0.

(i) Prove that θ exists and is uniquely determined.
(ii) Prove that

θ(pk) = (−1)k
(

1
2

k

)
.

This is the coefficient of zk in the Taylor expansion of (1− z)1/2 centred at 0. It is easily
checked that

θ(pk) = − (2k)!

22k(k!)2
= − 1

22k

(
2k

k

)
.

(iii) By considering the function θ1(n) =
∏

pk∥n θ(p
k), or otherwise, show that θ ∈ M.

8. Let s ∈ N. Generalise the results of question 7 to the situation θ ∗ θ ∗ · · · ∗ θ = µ where
on the left one has the s-fold product.

9. Prove that ∑
m|n

(−1)m−1µ(n/m) =


1 (n = 1),

−2 (n = 2),

0 (n > 2).

9.3 Averages of Arithmetical Functions

One of the most powerful techniques we have is to take an average.

Example 9.2. Suppose we have an arithmetical function f and we would like to know
that is it often non-zero. If we could show, for example, that for each large X we have∑

n≤X

f(n)2 > C1X
5/3

and
|f(n)| < C2X

1/3 (n ≤ X),

where C1 and C2 are positive constants, then it follows that

C1X
5/3 <

∑
n≤X

f(n)2 ≤ (C2X
1/3)2 card{n ≤ X : f(n) ̸= 0}

and so
card{n ≤ X : f(n) ̸= 0} > C1C

−2
2 X.

A more sophisticated version of this would be that if one could show that∑
X<n≤2X

(
f(n)− C3n

1/3
)2
< C4X

4/3,

then it would follow that for most n the function f(n) is about n1/3.
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This technique has been used to show that “almost all” even numbers are the sum of
two primes.

We are going to need some notation which avoids the continual use of C1, C2, . . ., etc.,
to denote unspecified constants.

Given functions f and g defined on some domain X with g(x) ≥ 0 for all x ∈ X we
write

f(x) = O
(
g(x)

)
(9.2)

to mean that there is some constant C such that

|f(x)| ≤ Cg(x)

for every x ∈ X . We also use

f(x) = o
(
g(x)

)
to mean that if there is some limiting operation, such as x→ ∞, then

f(x)

g(x)
→ 0

and

f(x) ∼ g(x)

to mean
f(x)

g(x)
→ 1.

The symbol O was introduced by Bachmann in 1894, and the symbol o by Landau in
1909. The O-symbol can be a bit clumsy for complicated expressions and we will often
instead use the Vinogradov symbols, which I. M. Vinogradov introduced about 1934.
Thus we will use

f ≪ g (9.3)

to mean (9.2). This also has the advantage that we can write strings of inequalities in
the form

f1 ≪ f2 ≪ f3 ≪ . . . .

Also if f is also non-negative we may use

g ≫ f

to mean (9.3).

Our first theorem on averages concerns the function r(n) and is due to Gauss. The
proof illustrates a rather general principle.
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Theorem 9.9 (Gauss). Let X ≥ 1 and G(X) denote the number of lattice points in
the disc centre 0 of radius

√
X, i.e. the number of ordered pairs of integers x, y with

x2 + y2 ≤ X. Then

G(X) =
∑
n≤X

r(n)

and
G(X) = πX +O(X1/2).

Let
E(X) = G(X)− πX.

The question of the actual size of E(X) is one of the classic problems of analytic number
theory.

Proof. The first part of this is immediate from the definition of r(n).
To prove the second part we associate with each lattice point (x, y) the unit square

S(x, y) = [x, x + 1) × [y, y + 1) and this gives a partition of the plane. The squares
with x2 + y2 ≤ X are contained in the disc centred at 0 of radius

√
X +

√
2 (apply

Pythagorus’s theorem). On the other hand their union contains the disc centered at 0 of
radius

√
X −

√
2. Moreover their area is G(X) and it lies between the areas of the two

discs, so
π(
√
X −

√
2)2 ≤ G(X) ≤ π(

√
X +

√
2)2,

i.e.
πX − π2

√
2
√
X + 2 < G(X) ≤ πX + π2

√
2
√
X + 2π,

Hence |G(X)− πX| ≤ π2
√
2
√
X + 3π ≪

√
X.

The general principle involved in the above proof is that if one has some finite convex
region in the plane and one expands it homothetically, then the number of lattice points
in the region is approximately the area of the region with an error of order the length
of the boundary. Thus in the theorem above the unit disc centered at the origin has
its linear dimensions blown up by a factor of

√
X (its radius) and the number of lattice

points is approximately its area, πX with an error of order the length of the boundary
2π

√
X.
Before proceeding to look further at some of the arithmetical functions we have defined

above, consider the important sum

S(X) =
∑
n≤X

1

n
(9.4)

where X ≥ 1. This crops up in many places. We already saw it in Chapter 1 in Euler’s
proof of the infinitude of primes, Theorem 1.3. We observed that the sum S(X) behaves
a bit like the integral so is a bit like logX which tends to infinity with X. In fact there
is something more precise which one can say, which was discovered by Euler.
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Theorem 9.10 (Euler). When X ≥ 1 the sum S(X) satisfies

S(X) = logX + C0 +O

(
1

X

)
where C0 = 0.577 . . . is Euler’s constant

C0 = 1−
∫ ∞

1

t− ⌊t⌋
t2

dt

where ⌊∗⌋ is defined in Definition 1.5.

Proof. We have

S(X) =
∑
n≤X

(
1

X
+

∫ X

n

dt

t2

)
=

⌊X⌋
X

+

∫ X

1

⌊t⌋
t2
dt

=

∫ X

1

dt

t
+ 1−

∫ X

1

t− ⌊t⌋
t2

dt− X − ⌊X⌋
X

= logX + C0 +

∫ ∞

X

t− ⌊t⌋
t2

dt− X − ⌊X⌋
X

.

Euler computed C0 to 19 decimal places (by hand of course). Actually that is not so
hard.

One of the more famous theorems concerning averages of arithmetical functions is

Theorem 9.11 (Dirichlet). Suppose that X ∈ R and X ≥ 2. Then∑
n≤X

d(n) = X logX + (2C0 − 1)X +O(X1/2).

Let

∆(X) =
∑
n≤X

d(n)−X logX − (2C0 − 1)X.

As with the similar question for the Gauss lattice point problem one can ask “how does
∆(X) really behave?”

Proof. The divisor function d(n) can be thought of as the number of ordered pairs of
positive integers m, l such that ml = n. Thus when we sum over n ≤ X we are just
counting the number of ordered pairs m, l such that ml ≤ X. In other words we are
counting the number of lattice points m, l under the rectangular hyperbola

xy = X.
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The method that Gauss employed for his lattice point problem fails here, because the
area under the rectangular hyperbola is infinite, and so is the boundary. Nevertheless the
number of lattice points under the curve is finite.

We follow Dirichlet’s ingenious proof method, which has become known as the method
of the hyperbola. We could just crudely count, given m ≤ X, the number of choices for l,
namely ⌊

X

m

⌋
and obtain ∑

m≤X

X

m
+O(X)

and then apply Euler’s estimate for S(X), but this gives a much weaker error term.
Dirichlet’s idea is to divide the region under the hyperbola into two parts. That with

m ≤
√
X, l ≤ X

m

and that with

l ≤
√
X, m ≤ X

l
.

Clearly each region has the same number of lattice points. However the points m, l with
m ≤

√
X and l ≤

√
X are counted in both regions. Thus we obtain∑
n≤X

d(n) = 2
∑

m≤
√
X

⌊
X

m

⌋
− ⌊

√
X⌋2

= 2
∑

m≤
√
X

X

m
−X +O(X1/2)

= 2X
(
log(

√
X) + C0

)
−X +O(X1/2).

where in the last line we used Euler’s estimate.

One can also compute an average for Euler’s function

Theorem 9.12. Suppose that x ∈ R and x ≥ 2. Then∑
n≤x

ϕ(n) =
x2

2

∞∑
m=1

µ(m)

m2
+O(x log x).

We remark that the infinite series here is “well known” to be 6
π2 .

Proof. We have ϕ = µ ∗N . Thus∑
n≤x

ϕ(n) =
∑
n≤x

n
∑
m|n

µ(m)

m
=
∑
m≤x

µ(m)
∑
l≤x/m

l.
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We want a good approximation to the inner sum. This is just the sum of an arithmetic
progression of ⌊x/m⌋ terms with first term 1 and last term ⌊x/m⌋. Thus the sum is

1

2

⌊ x
m

⌋(
1 +

⌊ x
m

⌋)
=

1

2

( x
m

)2
+O

( x
m

)
.

Inserting this in the formula above gives

∑
n≤x

ϕ(n) =
x2

2

∑
m≤x

µ(m)

m2
+O

(∑
m≤x

x

m

)
.

The error term is ≪ x log x by Euler’s bound applied to the sum. The main term is

x2

2

∞∑
m=1

µ(n)

m2
+O

(∑
m>x

x2

m2

)

The error term here, by the monotonicity of the general term is

≪ x2
∫ ∞

x

dy

y2
≪ x.

Collecting together our bounds gives the theorem.

There is a curious application of this.

Theorem 9.13. The probability that two positive integers are coprime is 6
π2 . In other

words
1

x2
card{m,n : m,n ≤ x, (m,n) = 1} → 6

π2
as x→ ∞.

Proof. We have ∑
n≤x

ϕ(n) =
∑
n≤x

∑
m≤n

(m,n)=1

1

=
1

2
card{m,n : m ≤ n ≤ x, (m,n) = 1}

=
1

2
card{m,n : m,n ≤ x, (m,n) = 1}+ 1

2
.

since if m > 1, then (m,m) = m > 1. Thus

1

x2
card{m,n : m,n ≤ x, (m,n) = 1} = − 1

x2
+

2

x2

∑
n≤x

ϕ(n)

and the result follows from the previous theorem.
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9.3.1 Exercises

1. Prove that for any positive fixed real numbers C and ε we have (log n)C ≪ nε.

2. Suppose that f(x) is differentiable on [1, X] with a continuous derivative on [1, X].
(i) Prove that ∑

n≤X

f(n) = ⌊X⌋f(X)−
∫ X

1

⌊t⌋f ′(t)dt

=

∫ X

1

f(t)dt+ f(1)− (X − ⌊X⌋)f(X) +

∫ X

1

(t− ⌊t⌋)f ′(t)dt.

(ii) Suppose further that f is differentiable on [1,∞) with a continuous derivative on
[1,∞) and that ∫ ∞

0

|f ′(t)|dt

converges. Prove that

∑
n≤X

f(n) =

∫ X

1

f(t)dt+ C − (X − ⌊X⌋)f(X)−
∫ ∞

X

(t− ⌊t⌋)f ′(t)dt

where

C = f(1) +

∫ ∞

1

(t− ⌊t⌋)f ′(t)dt.

3. Prove that
∑

n≤x
σ(n)
n

= π2

6
x+O(log x) for x ≥ 2.

4. Let D(x) =
∑

n≤x d(n).
(i) Prove that ∑

n≤x

d(n)

n
=
D(x)

x
+

∫ x

1

D(u)

u2
du.

(ii) Prove that ∑
n≤x

d(n)

n
=

1

2
(log x)2 +O(log x).

5. A number n ∈ N is squarefree when it has no repeated prime factors. For X ∈ R,
X ≥ 1 let Q(X) denote the number of squarefree numbers not exceeding X.

(i) Prove that

Q(X) =
6

π2
X +O

(√
X
)
.

(ii) Prove that if n ∈ N, then

Q(n) ≥ n−
∑
p

[
n

p2

]
.
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(iii) Prove that∑
p

1

p2
<

1

4
+

∞∑
k=1

1

(2k + 1)2
<

1

4
+

∞∑
k=1

1

4k(k + 1)
=

1

2
.

(iv) Prove that Q(n) > n/2 for all n ∈ N.
(v) Prove that every integer n > 1 is a sum of two squarefree numbers.

6. Let f(n) denote the number of solutions of x3+ y3 = n in natural numbers x, y. Show
that ∑

n≤X

f(n) = AX2/3 +O
(
X1/3

)
where A =

∫ 1

0

(1− α3)1/3dα.

Note that A = 1
3
B(4/3, 1/3) = Γ(4/3)2

Γ(5/3)
= 1

π
33/2Γ(4/3)3. Here B(α, β) is the Beta function.

7. Show that the number N(X) of different natural numbers of the form 2r3s with r ∈ N,
s ∈ N and 2r3s ≤ X satisfies

N(X) =
(logX)2

2(log 2)(log 3)
+O(logX)

as X → ∞. Hint: Note that the condition 2r3s ≤ X is equivalent to r log 2 + s log 3 ≤
logX.

8. Let M(X) denote the number of ordered pairs (m,n) with m ̸= n, m ≤ X and n ≤ X
such that gcd(m,n) = 1. Prove that

M(X) = 2
∑

2≤n≤X

ϕ(n) =
6

π2
X2 +O(X logX),

that is, the probability that two different integers chosen at random from [1, X] are
coprime is 6

π2 .

9. Let Let
dk(n) =

∑
m1,m2,...,mk
m1m2...mk=n

1.

Prove that ∑
n≤X

dk(n) ∼ X
(logX)k−1

(k − 1)!
as X → ∞.

10. (i) Prove that d(mn) ≤ d(m)d(n)
(ii) Prove that ∑

n≤x

d(n)2 ≪ x(log x)3.

(iii) Let k be a fixed positive integer. Prove that∑
n≤x

d(n)k ≪ x(log x)2
k−1.
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9.4 Orders of Magnitude of Arithmetical Functions.

It is sometimes useful to know something about the way that an arithmetical function
grows. Multiplicative functions tend to oscillate quite a bit in size. For example d(p) = 2
but if we take n to be the product of the first k primes where k is large, then

d(n) = 2k.

The function d(n) also arises in comparisons, for example in deciding the convergence of
certain important series. Thus it is useful to have a simple universal upper bound.

Theorem 9.14. Let ε > 0. Then there is a positive number C which depends at most on
ε such that for every n ∈ N we have

d(n) < Cnε.

Note, such a statement is often written as

d(n) = Oε(n
ε)

or
d(n) ≪ε n

ε.

Proof. It suffices to prove the theorem when

ε ≤ 1

log 2
.

Write n = pk11 . . . pkrr where the pj are distinct. Recall that

d(n) = (k1 + 1) . . . (kr + 1).

Thus
d(n)

nε
=

r∏
j=1

kj + 1

p
εkj
j

.

Since we are only interested in an upper bound the terms for which pεj > 2 can be thrown

away since 2k ≥ k + 1. However there are only ≤ 21/ε primes pj for which

pεj ≤ 2.

Morever for any such prime we have

p
εkj
j ≥ 2εkj

= exp(εkj log 2)

≥ 1 + εkj log 2

≥ (kj + 1)ε log 2.
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Thus
d(n)

nε
≤
(

1

ε log 2

)21/ε

. (9.5)

The above can be refined.

Theorem 9.15. Let ε > 0. Then for every n ∈ N we have

d(n) ≪ exp

(
(log 2 + ε) log n

log log n

)
In Theorem 9.23 we will show that this is essentially best possible.

Proof. We may suppose that n is larger than some function of ε. In (9.5) replace the ε
of that inequality by

log 2 + ε
2

log log n
.

The nε becomes

exp

((
log 2 + ε

2

)
log n

log log n
,

)
and the right hand side becomes

exp

(
2

log logn
log 2+ε/2 log

log log n

(log 2 + ε/2) log 2

)
= exp

(
(log n)1−

ε/2
log 2+ε/2 log

log log n

(log 2 + ε/2) log 2

)
≪ exp

(
ε log n

2 log log n

)
.

The product ∏
p|n

(
1− 1

p

)
,

or similar such objects, can arise in many contexts. Crudely,

(1− 1/p)−1 ≤ 2 = d(p) ≤ d(pk).

Thus ∏
p|n

(
1− 1

p

)
≥ 1

d(n)
≫ n−ε.

Thus

n exp

(
−(log 2 + ε)

log n

log log n

)
≤ ϕ(n) < n.

Later we will do much better than this.
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9.4.1 Exercises

1. Let
dk(n) =

∑
m1,m2,...,mk
m1m2...mk=n

1.

(i) Prove that dk ∈ M.
(ii) Prove that for any fixed ε > 0 we have

dk(n) ≪ nε.

9.5 Euler and Primes

There is a function which we have already seen in Definition 1.5, but we have only used
so far as a form of shorthand. This is the floor function. It is not an arithmetical function
- it is defined on R, not Z. There is a variant of this which is also useful.

Definition 9.11. Occasionally it is also useful to define the ceiling function ⌈α⌉ for
real numbers α as the smallest integer u such that α ≤ u.

The difference α − ⌊α⌋ is often called the fractional part of α and is sometimes
denoted by {α}.

Example 9.3. ⌊π⌋ = 3, ⌈π⌉ = 4, ⌊
√
2⌋ = 1, ⌊−

√
2⌋ = −2, ⌈−

√
2⌉ = −1.

Another related function which is very useful in some parts of number theory, although
we will not use it here is ∥x∥, the distance of x from a nearest integer,

∥x∥ = min
n∈Z

|x− n| = min(x− ⌊x⌋, ⌈x⌉ − x).

We already explored the properties of the floor function in Theorem 1.10. Here is
another useful property. The floor function has some useful properties.

Theorem 9.16. For x ∈ R define b(x) = ⌊x⌋−2⌊x/2⌋. Then b(x) is periodic with period
2 and b(x) = 0 when 0 ≤ x < 1 and 1 when 1 ≤ x < 2.

Proof. For x ∈ R define b(x) = ⌊x⌋ − 2⌊x/2⌋. Then b(x) is periodic with period 2 and
b(x) = 0 when 0 ≤ x < 1 and 1 when 1 ≤ x < 2.

The periodicity is easy, since for any k ∈ Z we have

b(x+ 2k) = ⌊x⌋+ 2k − 2⌊(x/2) + k⌋
= ⌊x⌋+ 2k − 2⌊(x/2)⌋ − 2k

= b(x).

Hence we only have to evaluate it when 0 ≤ x < 2. It is pretty clear that b(x) = 0 when
0 ≤ x < 1 and = 1 when 1 ≤ x < 2.

Euler’s proof of Theorem 1.3 is the beginning of the modern approach.
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9.6 Elementary Prime number theory

The strongest results we know about the distribution of primes use complex analytic
methods. However there are some very useful and basic results that can be established
elementarily. Many expositions of the results we are going to describe use nothing more
than properties of binomial coefficients, but it is good to start to get the flavour of more
sophisticated interpretations. We start by introducing

Definition 9.12 (The von Mangoldt function). This is defined by

Λ(n) =


0 if n = 1,

0 if p1p2|n with p1 ̸= p2,

log p if n = pk.

The support of Λ is the prime powers. The higher powers are quite rare, at most
O (

√
x) of them not exceeding x, and so the function is mostly concentrated on the

primes themselves. This function is definitely not multiplicative, since Λ(1) = 0, but
nevertheless it has an interesting and useful relationship with a familiar function as a
consequence of the extension to prime powers.

Lemma 9.17. Let n ∈ N. Then ∑
m|n

Λ(m) = log n,

Proof. Write n = pk11 . . . pkrr with the pj distinct. Then for a non-zero contribution to the
sum we have m = pjss for some s with 1 ≤ s ≤ r and js with 1 ≤ js ≤ ks. Thus the sum
is

r∑
s=1

ks∑
js=1

log ps = log n.

We need to know something about the average of log n.

Lemma 9.18 (Stirling). Suppose that X ∈ R and X ≥ 2. Then∑
n≤X

log n = X(logX − 1) +O(logX).

This can be thought of as the logarithm of Stirling’s formula for ⌊X⌋!.
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Proof. We have ∑
n≤X

log n =
∑
n≤X

(
logX −

∫ X

n

dt

t

)

= ⌊X⌋ logX −
∫ X

1

⌊t⌋
t
dt

= X(logX − 1) +

∫ X

1

t− ⌊t⌋
t

dt+O(logX).

Now we can say something about averages of the von Mangoldt function.

Theorem 9.19. Suppose that X ∈ R and X ≥ 2. Then∑
m≤X

Λ(m)

⌊
X

m

⌋
= X(logX − 1) +O(logX).

Proof. The sum in question is

=
∑
m≤X

Λ(m)
∑

k≤X/m

1.

Collecting together the ordered pairs mk = n for a given n and rearranging gives∑
n≤X

∑
k,m
km=n

Λ(m)

and this is ∑
n≤X

∑
m|n

Λ(m).

By the first lemma this is ∑
n≤X

log n

and by the second it is
X(logX − 1) +O(logX).

At this stage it is necessary to introduce some of the fundamental counting functions
of prime number theory. For X ≥ 0 we define

ψ(X) =
∑
n≤X

Λ(n),

ϑ(X) =
∑
p≤X

log p,

π(X) =
∑
p≤X

1.
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The following theorem shows the close relationship between these three functions.

Theorem 9.20. Suppose that X ≥ 2. Then

ψ(X) =
∑
k

ϑ(X1/k),

ϑ(X) =
∑
k

µ(k)ψ(X1/k),

π(X) =
ϑ(X)

logX
+

∫ X

2

ϑ(t)

t log2 t
dt,

ϑ(X) = π(X) logX −
∫ X

2

π(t)

t
dt.

Note that each of these functions are 0 when X < 2, so the sums are all finite.

Proof. By the definition of Λ we have

ψ(X) =
∑
k

∑
p≤X1/k

log p =
∑
k

ϑ(X1/k).

Hence we have ∑
k

µ(k)ψ(X1/k) =
∑
k

µ(k)
∑
l

ϑ(X1/(kl)).

Collecting together the terms for which kl = m for a given m this becomes∑
m

ϑ(X1/m)
∑
k|m

µ(k) = ϑ(X).

We also have

π(X) =
∑
p≤X

(log p)

(
1

logX
+

∫ X

p

dt

t log2 t

)

=
ϑ(X)

logX
+

∫ X

2

ϑ(t)

t log2 t
dt.

The final identity is similar.

ϑ(X) =
∑
p≤X

logX −
∑
p≤X

∫ X

p

dt

t

etcetera.

Now we come to a series of theorems which are still used frequently.
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Theorem 9.21 (Chebyshev). There are positive constants C1 and C2 such that for each
X ∈ R with X ≥ 2 we have

C1X < ψ(X) < C2X.

Proof. Recall the function

b(x) = ⌊x⌋ − 2
⌊x
2

⌋
defined in Theorem 9.16 for x ∈ R. There we showed that b is periodic with period 2 and

b(x) =

{
0 (0 ≤ x < 1),

1 (1 ≤ x < 2).

Hence

ψ(X) ≥
∑
n≤X

Λ(n)b(X/n)

=
∑
n≤X

Λ(n)

⌊
X

n

⌋
− 2

∑
n≤X/2

Λ(n)

⌊
X/2

n

⌋
.

Here we used the fact that there is no contribution to the second sum whenX/2 < n ≤ X.
Now we apply Theorem 9.19 and obtain for x ≥ 4

X(logX − 1)− 2
X

2

(
log

X

2
− 1)

)
+O(logX) = X log 2 +O(logX).

This establishes the first inequality of the theorem for all X > C for some positive
constant C. Since ψ(X) ≥ log 2 for all X ≥ 2 the conclusion follows if C1 is small
enough.

We also have, for X ≥ 4,

ψ(X)− ψ(X/2) ≤
∑
n≤X

Λ(n)f(X/n)

and we have already seen that this is

X log 2 +O(logX).

Hence for some positive constant C we have, for all X > 0,

ψ(X)− ψ(X/2) ≤ CX.

Hence, for any k ≥ 0,
ψ(X2−k)− ψ(X2−k−1) < CX2−k.

Summing over all k gives the desired upper bound.
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We can now obtain the following.

Corollary 9.22 (Chebyshev). There are positive constants C3, C4, C5, C6 such that for
every X ≥ 2 we have

C3X <ϑ(X) < C4X,

C5X

logX
<π(X) <

C6X

logX
.

Proof. The second result of Theorem 9.20 states that

ϑ(X) =
∞∑
k=1

µ(k)ψ(X1/k).

Remember that the series is really finite because the terms are all 0 when X1/k < 2, i.e
k > (logX)/(log 2). Thus by the previous theorem∣∣∣∣∣

∞∑
k=2

µ(k)ψ(X1/k)

∣∣∣∣∣ ≤ C2X
1/2 + C2X

1/3 logX

log 2
< CX1/2

for some constant C. Thus

|ϑ(X)− ψ(X)| < CX1/2

and so by the previous theorem again

C1X − CX1/2 < ϑ(X) < C2 + CX1/2 < C4X

with, say C4 = C2 + C. If we take 0 < C ′ < C1, then

C ′X < C1X − CX1/2

provided that X > X0 =
(

C
C1−C′

)2
. Since ϑ(X) ≥ log 2 whenever X ≥ 2 we can take C3

to be the minimum of C ′ and

min
2≤X≤X0

(
ϑ(X)

X

)
.

Now turn to π(X). By the third formula in Theorem 9.20 we have

π(X) =
ϑ(X)

logX
+

∫ X

2

ϑ(t)

t log2 t
dt.

Thus, at once

π(X) ≥ ϑ(X)

logX
≥ C3X

logX
.
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The upper bound is more annoying. We have

π(X) ≤ C4X

logX
+

∫ X

2

C4dt

log2 t
.

The integral here is bounded by

∫ √
X

2

C4dt

(log 2)2
+

∫ X

√
X

C4dt

(log
√
X)2

<
C4

√
X

(log 2)2
+

4C4X

(logX)2
<

C ′X

logX
.

Chebychev’s theorem can be used to establish a companion to Theorem 9.15.

Theorem 9.23. For every ε > 0 there are infinitely many n such that

d(n) > exp

(
(log 2− ε) log n

log log n

)
.

Proof. Let n =
∏

p≤X p so that

log n = ϑ(X).

Then, by Chebyshev

X ≪ log n≪ X

and so

logX ∼ log log n.

Moreover

d(n) = 2π(X),

whence

log d(n) = (log 2)π(X)

≥ (log 2)
ϑ(X)

logX

∼ (log 2)
log n

log log n
.

It is also possible to establish a more precise version of Euler’s result on the primes.
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Theorem 9.24 (Mertens). There is a constant B and a positive constant c such that
whenever X ≥ 2 we have∑

n≤X

Λ(n)

n
= logX +O(1), (9.6)

∑
p≤X

log p

p
= logX +O(1), (9.7)

∑
p≤X

1

p
= log logX +B +O

(
1

logX

)
, (9.8)

∏
p≤X

(
1− 1

p

)
=

c

logX
+O

(
1

(logX)2

)
. (9.9)

Proof. By Theorem 9.19 we have∑
m≤X

Λ(m)

⌊
X

m

⌋
= X(logX − 1) +O(logX).

The left hand side is

X
∑
m≤X

Λ(m)

m
+O(ψ(X)).

Hence by Cheyshev’s theorem we have

X
∑
m≤X

Λ(m)

m
= X logX +O(X).

Dividing by X gives the first result.
We also have ∑

m≤X

Λ(m)

m
=
∑
k

∑
pk≤X

log p

pk
.

The terms with k ≥ 2 contribute

≤
∑
p

∑
k≥2

log p

pk
≤

∞∑
n=2

log n

n(n− 1)

which is convergent, and this gives the second expression.
Finally we can see that∑

p≤X

1

p
=
∑
p≤X

log p

p

(
1

logX
+

∫ X

p

dt

t log2 t

)

=
1

logX

∑
p≤X

log p

p
+

∫ X

2

∑
p≤t

log p

p

dt

t log2 t
.
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Let

E(t) =
∑
p≤t

log p

p
− log t

so that by the second part of the theorem we have E(t) ≪ 1. Then the above is

=
logX + E(X)

logX
+

∫ X

2

log t+ E(t)

t log2 t
dt

= log logX + 1− log log 2 +

∫ ∞

2

E(t)

t log2 t
dt

+
E(X)

logX
−
∫ ∞

X

E(t)

t log2 t
dt.

The first integral here converges and the last two terms are

≪ 1

logX
.

For the final assertion of the theorem observe that

− log

(
1− 1

p

)
=

∞∑
k=1

1

kpk

and so

− log
∏
p≤X

(
1− 1

p

)
=
∑
p≤X

1

p
+B1 −

∑
p>X

∞∑
k=2

1

kpk

where

B1 =
∑
p

∞∑
k=2

1

kpk

which converges absolutely since

∞∑
k=2

1

kpk
≤

∞∑
k=2

1

pk
=

1

p(p− 1)
.

The other series is bounded by ∑
p>X

1

p(p− 1)
≪ X−1.

Hence, by the third part of the theorem,

− log
∏
p≤X

(
1− 1

p

)
= log logX +B2 +O

(
1

logX

)
for some real constant B2. Exponentiating both sides gives the desired conclusion.
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There are several interesting applications of the above which lead to some important
developments.

Theorem 9.25. Suppose that n ≥ 3. Let c be the constant of Theorem 9.24. Then∏
p|n

(
1− 1

p

)
≥ c

log log n
+O

(
1

(log log n)2

)

and
cn

log log n
+O

(
n

(log log n)2

)
≤ ϕ(n) < n.

Proof. Suppose that n has k different prime factors and pj denotes the j-th prime in
order of magnitude. Then

∏
p|n

(
1− 1

p

)
≥

k∏
j=1

(
1− 1

pj

)
=
∏
p≤pk

(
1− 1

p

)
.

By Theorem 9.24 this is
c

log pk
+O

(
1

(log pk)2

)
.

Moreover
n ≥

∏
j≤k

pj = exp
(
ϑ(pk)

)
.

Hence log n ≥ ϑ(pk) and so by Chebyshev’s theorem pk ≪ log n. Hence log pk ≤
log log n+O(1) and the conclusions follow.

9.6.1 Exercises

1. Let P (Y ) =
∏

p≤Y p. Prove that if X ≥ 1, then

π(X) = π(
√
X)− 1 +

∑
m|P (

√
X)

µ(m)

⌊
X

m

⌋
.

2. When X ≥ 1 let

T (X) =
∑
m≤X

µ(m)

m
.

(i) Prove that ∑
m≤X

µ(m)

⌊
X

m

⌋
= 1.
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(ii) Prove that

−1 +
1

X
≤ T (X) ≤ 1

X
+ 1.

Actually T (X) → 0 as X → ∞, but this is non-trivial, and can be proved by the same
methods as those used to prove the prime number theorem.

3. Suppose that m ∈ N, a, b ∈ Z and (a,m) = 1. Prove that

m∑
x=1

(
ax+ b

m
−
⌊
ax+ b

m

⌋
− 1

2

)
= −1

2
.

4. Let A(x) = ⌊x⌋ − ⌊x/2⌋ − ⌊x/3⌋ − ⌊x/6⌋.
(i) Prove that A(x) is periodic with period 6 and

A(x) =


0 x ∈ [0, 1),

1 x ∈ [1, 5),

2 x ∈ [5, 6).

(ii) Let

S(x) =
∑
m≤x

Λ(m)A(x/m).

Prove that if x ≥ 6, then S(x) = cx+O(log x) where

c =
1

2
log 2 +

1

3
log 3 +

1

6
log 6 = 1.01140 . . . .

(iii) Prove that if x ≥ 0, then

ψ(x) + ψ(x/5)− 2ψ(x/6) ≤ S(x) ≤ ψ(x) + ψ(x/5).

(iv) Prove that if x ≥ 2, then

ψ(x) ≤ 6c

5
x+O(log2 x).

5. For x ≥ 0 define B(x) = ⌊x⌋ − ⌊x/2⌋ − ⌊x/3⌋ − ⌊x/5⌋+ ⌊x/30⌋.
(i) Prove that B(x) is periodic with period 30,

B(x) =



0 x ∈ [0, 1),

1 x ∈ [1, 6),

0 x ∈ [6, 7),

1 x ∈ [7, 10),

0 x ∈ [10, 11),

1 x ∈ [11, 12),

0 x ∈ [12, 13),

1 x ∈ [13, 15)
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and that if 0 ≤ x < 15, then B(x + 15) = B(x) + ⌊x/2⌋ − ⌊(x + 1)/2⌋. Deduce that
0 ≤ B(x) ≤ 1 for all x.

(ii) Let T (x) =
∑
m≤x

Λ(m)B(x/m). Prove that B(x) = c′x + O(log x) where c′ =

1

2
log 2 +

1

3
log 3 +

1

5
log 5− 1

30
log 30 = 0.9212 . . ..

(iii) Prove that ψ(x)− ψ(x/6) ≤ T (x) ≤ ψ(x).
(iv) Prove that if x ≥ 2, then

c′x+O(log x) ≤ ψ(x) ≤ 6c′

5
x+O(log2 x).

Remark: 6c′/5 = 1.1054 . . ..

6. (i) Prove that if x ≥ 1, then∫ x

1

ψ(u)

u2
du = log x+O(1).

(ii) Prove that lim supx→∞
ψ(x)
x

≥ 1 and lim infx→∞
ψ(x)
x

≤ 1.
(iii) Prove that if there is a constant c such that ψ(x) ∼ cx as x→ ∞, then c = 1.
(iv) Prove that if there is a constant c such that π(x) ∼ c x

log x
as x→ ∞, then c = 1.

7. (i) Let dn = lcm[1, 2, . . . , n]. Show that dn = eψ(n).

(ii) Let P ∈ Z[x], degP ≤ n. Put I = I(P ) =
∫ 1

0
P (x) dx. Show that Idn+1 ∈ Z, and

hence that dn+1 ≥ 1/|I| if I ̸= 0.
(iii) Show that there is a polynomial P as above so that Idn+1 = 1.
(iv) Verify that max0≤x≤1 |x2(1− x)2(2x− 1)| = 5−5/2.

(v) For P (x) =
(
x2(1− x)2(2x− 1)

)2n
, verify that 0 < I < 5−5n.

(vi) Show that ψ(10n+ 1) ≥ (1
2
log 5) · 10n.

9.7 The Normal Number of Prime Factors

As a companion to the definition of a multiplicative function we have

Definition 9.13. An f ∈ A is additive when it satisfies f(mn) = f(m)+f(n) whenever
(m,n) = 1.

Now we introduce two further functions.

Definition 9.14. We define ω(n) to be the number of different prime factors of n and
Ω(n) to be the total number of prime factors of n.

Example 9.4. We have 360 = 23325 so that ω(360) = 3 and Ω(360) = 6. Generally,
when the pj are distinct, ω(pk11 . . . pkrr ) = r and Ω(pk11 . . . pkrr ) = k1 + · · ·+ kr.
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One might expect that most of the time Ω is appreciably bigger than ω, but in fact
this is not so. By the way, there is some connection with the divisor function. It is not
hard to show that

2ω(n) ≤ d(n) ≤ 2Ω(n).

In fact this is a simple consequence of the chain of inequalities

2 ≤ k + 1 ≤ 2k.

Theorem 9.26. Suppose that X ≥ 2. Then∑
n≤X

ω(n) = X log logX +BX +O

(
X

logX

)
where B is the constant of Theorem 9.24, and

∑
n≤X

Ω(n) = X log logX +

(
B +

∑
p

1

p(p− 1)

)
X +O

(
X

logX

)
.

Proof. We have ∑
n≤X

ω(n) =
∑
n≤X

∑
p|n

1 =
∑
p≤X

⌊
X

p

⌋
= X

∑
p≤X

1

p
+O

(
π(X)

)
and the result follows by combining Corollary 9.22 and (9.8) of Theorem 9.24.

The case of Ω is similar. We have

∑
n≤X

Ω(n) = X
∑
p,k

pk≤X

1

pk
+O

 ∑
k≤(logX)/(log 2)

π(X1/k)

 .

When k ≥ 2 the terms in the error are ≪ X1/2 and so the total contribution from the
k ≥ 2 is ≪ X1/2 logX. In the main term, when k ≥ 2 it remains to understand the
behaviour of ∑

k≥2

∑
p>X1/k

1

pk
≤

∑
p>X1/2

1

p2
+
∑
k≥3

1

(X1/k)k/2

∑
p

1

pk/2
.

The first sum is ≪ X−1/2 and the second is

≪ X−1/2
∑
p

1

p(p1/2 − 1)
≪ X−1/2.



152 CHAPTER 9. ARITHMETICAL FUNCTIONS

Hardy and Ramanujan made the remarkable discovery that log log n is not just the
average of ω(n), but is its normal order. Later Turán found a simple proof of this.

Theorem 9.27 (Hardy & Ramanujan). Suppose that X ≥ 2. Then

∑
n≤X

(
ω(n)−

∑
p≤X

1

p

)2

≪ X
∑
p≤X

1

p
,

∑
n≤X

(ω(n)− log logX)2 ≪ X log logX

and ∑
2≤n≤X

(ω(n)− log log n)2 ≪ X log logX.

This theorem says that the normal number of prime factors of n is log log n.

Proof. (Turán). By (9.8), we have

∑
n≤X

(∑
p≤X

1

p
− log logX

)2

≪ X

and, since for
√
X < n ≤ X, we have

0 ≤ log logX − log log n < log logX − log log
√
X

= logX − log
1

2
logX

= log 2,

it follows that ∑
2≤n≤X

(log logX − log log n)2 ≪
√
X(log logX)2 +

∑
√
Xn≤X

1

≪ X.

Thus it suffices to prove the second statement in the theorem. We have∑
n≤X

ω(n)2 =
∑
n≤X

∑
p1|n

∑
p2|n

1

=
∑
p1≤X

∑
p2≤X
p2 ̸=p1

⌊
X

p1p2

⌋
+
∑
p≤X

⌊
X

p

⌋

≤
∑
p1≤X

∑
p2≤X
p2 ̸=p1

X

p1p2
+
∑
p≤X

X

p

≤ X(log logX)2 +O(X log logX)
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by (9.8). Hence, by 9.26∑
n≤X

(ω(n)− log logX)2 ≤ 2X(log logX)2 − 2(log logX)
∑
n≤X

ω(n) +O(X log logX)

and this is ≪ X log logX.

One way of interpreting this theorem is to think of it probabilistically. It is saying
that the events p|n are approximately independent and occur with probability 1

p
. Thus

we can think of ω(n) as being a sum of independent random variables, and so the cental
limit theorem should apply. That is, one might guess that the distribution is normal.
This indeed is true and was established by Erdős and Kac in 1940. Let

Φ(a, b) = lim
x→∞

1

x
card{n ≤ x : a <

ω(n)− log log n√
log log n

≤ b}.

Then

Φ(a, b) =
1√
2π

∫ b

a

e−t
2/2dt.

This lead to a whole new subject, Probabilistic Number Theory.

9.7.1 Exercises

1. Let λ(n) = (−1)Ω(n) (Liouville’s function). Prove that

λ(n) =
∑
m2|n

µ
(
n/m2

)
.

2. Prove that Ω(n) ≤ logn
log 2

.

3. Let y be any real number with y > 1.
(i) By considering the prime divisors p of n with p > y, or otherwise, prove that

yω(n)−y ≤ n, i.e.

ω(n) ≤ y +
log n

log y
.

(ii) Prove that f(x) = 2x
1
2 − log x is an increasing function of x for x ≥ 1. Deduce

that if n ≥ 3, then

(log n)
1
2 <

2 log n

log log n
.

(iii) Prove that if n ≥ 3, then ω(n) ≤ 4 logn
log logn

.
4. Suppose that X ≥ 2. Prove that

∑
n≤X

(
Ω(n)−

∑
p≤X

1

p

)2

≪ X
∑
p≤X

1

p
,
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n≤X

(Ω(n)− log logX)2 ≪ X log logX

and ∑
2≤n≤X

(Ω(n)− log log n)2 .

5. Let ε > 0. Prove that the set E(X) of n ≤ X for which

(log n)log 2−ε < d(n) < (log n)log 2+ε

does not hold satisfies cardE(X) ≪ X
log logX

.

This reveals the curious fact that whereas the average value of d(n) is log n, d(n) is
normally smaller, about (log n)log 2. The reason is that the average is dominated by the
exceptionally large values of d(n).

9.8 Primes in arithmetic progressions

We finish the chapter by developing the ultimate version of Euclid’s proof that there are
infinitely many primes. Let k ∈ N and let Φk(z) denote the k-th cyclotomic polynomial.

Φk(z) =
k∏
l=1

(k,k)=1

(z −ϖl)

where
ϖ = e2πi/k.

Thus Φk is the monic polynomial whose roots are the primitive k-th roots of unity and
its degree is Euler’s function ϕ(k). Note that Φk(z) is a (polynomial) factor of zk − 1.

We can use the Möbius function to remove the condition that (l, k) = 1. Thus

Φk(z) =
k∏
l=1

(z −ϖl)
∑

m|(l,k) µ(m)

=
k∏
l=1

∏
m|(l,k)

(z −ϖl)µ(m)

=
∏
m|k

k/m∏
n=1

(z −ϖnm)

µ(m)

.

Therefore
Φk(z) =

∏
m|k

(zk/m − 1)µ(m). (9.10)



9.8. PRIMES IN ARITHMETIC PROGRESSIONS 155

Example 9.5. The cases k = 4 and 6 are

Φ4(z) = (z − i)(z + i) = z2 + 1 =
z4 − 1

z2 − 1

and

Φ6(z) = (z −ϖ)(z −ϖ5) = z2 − z + 1 =
(z6 − 1)(z − 1)

(z3 − 1)(z2 − 1)
.

For any prime p

Φp(z) = zp−1 + zp−2 + · · ·+ z + 1.

We can use (9.10) to prove that the cyclotomic polynomials have integer coefficients.

Theorem 9.28. The k-th cyclotomic polynomial has integer coefficients.

Proof. By the formula (9.10), when |z| < 1, we have

zϕ(k)Φk(1/z) =
∏
m|k

(1− zk/m)µ(m)

=
∏
m|k

µ(m)=1

(1− zk/m)
∏
m|k

µ(m)=−1

(1 + zk/m + z2k/m + · · · ).

We have a finite product of absolutely convergent series with integer coefficients whose
product is a polynomial. Collecting together terms shows that Φk(z) has integer coeffi-
cients.

The constant term of Φk(z) is
k∏
l=1

(l,k)=1

(−ϖl)

which has modulus 1. Thus it is ±1.
We can use these polynomials to show that given any k ∈ N there are infinitely many

primes of the form kx+ 1.

Theorem 9.29. Suppose that k ∈ N. Then there are infinitely many primes of the form
kx+ 1.

Proof. Suppose that r ∈ N, r > 1 and p is a prime with p ∤ k and p|Φk(r). Then p|rk − 1
and p ∤ r. Thus e = ordp r|k, and if m|k and p|rm − 1, then e|m. Write re = 1 + upv for
some positive integers u and v with p ∤ u. Then

rel − 1 = (1 + upv)l − 1 ≡ lupv (mod p2v).
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Thus if l|k, so that p ∤ l, pv is the exact power of p dividing rel− 1. Thus the exact power
of p dividing Φk(r) is ∏

m|k
e|m

(pv)µ(m) = pv
∑

l|k /eµ((k/e)/l).

and the exponent is 0 unless e = k. Thus we have shown that if p ∤ k and p|Φk(r), then
r has order k modulo p. Thus k = ord p(r)|p− 1.

Now suppose there are only a finite number of primes p1, . . . , pj in the residue class 1
modulo k and let r = kyp1 . . . pj where y is chosen to ensure that Φk(r) > 1. Then there
is at least one prime with p|Φk(r) and from above p ≡ 1 (mod k). Thus p|r also. Hence
p divides the constant term of Φk(z) = ±1 which is absurd.

9.8.1 Exercises

1. Prove that if p is a prime, then

Φpk(z) =

{
Φk(z

p)
Φk(z)

(p ∤ k),
Φk(z

p) (p|k).

2. Prove that if 2 ∤ k, j ≥ 1 and k > 1, then

Φ2jk = Φk

(
− z2

j−1)
.

3. Prove that if k > 1, then Φk(0) = 1.
4. (i) Prove that if k is the product of at most two distinct primes, then the coefficients
of Φk(z) are ±1 or 0.

(ii) Prove that the coefficient of z7 in Φ105(z) is −2.

5. Prove that Φk(1) = eΛ(k), where Λ is the von Mangoldt function.

6. (i) Suppose that 2|x, p is prime and p|x4 + 1. Show that 8|p− 1.
(ii) Suppose that x ≡ 3 (mod 412). Show that 41 divides x4 + 1, but 412 does not.

Hence show that there are infinitely many primes p ≡ 9 (mod 16).

7. By considering the polynomial x2 − 5 show that there are infinitely many primes p
satisfying p ≡ −1 (mod 5).

9.9 Notes

§1. Möbius discovered Mobius inversion in 1832. The exercise 9.2.1.2 is in E. Hille (1937).
The inversion problem of Möbius, Duke Math. J. 3, 549–568.

§3. As in the remark after Gauss’ Theorem 9.9 let E(X) = G(X) − πX. The
best bound we have for E(X) is in Huxley 2002, “Integer points, exponential sums and
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the Riemann zeta function”, Number theory for the millennium, II (Urbana, IL, 2000)
pp.275–290, pub. A K Peters, where it is shown that

E(X) = O(Xθ)

for any θ > 131
416

. We also know (Hardy and Landau, independently [1915]) that one cannot
take θ < 1

4
.

Euler investigated S(X) and C0 in 1735. Sometimes γ is used to denote C0 (Mascher-
oni 1790).

Theorem 9.11 occurs in J.P.G.L. Dirichlet (1849) “Über die Bestimmung der mittleren
Werte in der Zahlentheorie,” Abh. Akad. Wiss. Berlin,2, 49–66. A huge amount of work
has gone into bounding ∆(X). Suppose that θ is such that

∆(X) ≪ Xθ

for every X ≥ 1. Then the current world record is that this holds for any θ > 131/416 =
0.31490 · · · and is in M. N. Huxley (2003), “Exponential sums and lattice points III”,
Proc. London Math. Soc. 87 (3), 591–609. In the other direction Hardy [1916] proved
that one cannot take θ < 1

4
.

Theorem 9.12, or rather the exercise 9.3.1.8 is sometimes known as the primitive
lattice point problem. The error term is connected with the Riemann Hypothesis.

Apropos Exercise 9.3.1.10, Ramanujan (1916) “Some formulæ in the analytic theory
of numbers”, Messenger of Mathematics, 45, 81-84, formula (3), states that∑

n≤x

d(n)2 =
1

π2
x(log x)3 +Bx(log x)2 + Cx log x+Dx+O(xθ)

holds for certain constants B, C and D and for any θ > 3/5.
§6. Chebyshev established Theorems 9.21 and 9.22 in P. L. Chebyshev (1848, 1850),

“Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite
donné”, Mem. Acad. Sci. St. Petersburg 6, 1-19 and “Mémoire sur nombres premiers”,
Mem. Acad. Sci. St. Petersburg 7, 17-33. The various parts of Theorem 9.24 appeared
in F. Mertens (both 1874), “Über einige asymptotische Gesetze der Zahlentheorie”, J.
Reine Angew. Math. 77, 289-338 and “Ein Beitrag zur analytischen Zahlentheorie, J.
Reine Angew. Math. 78, 46-62. Exercise 9.6.1.5 appeared in “Mémoire sur les nombres
premier”, Journal de Mathématiques Pures et Appliquées, 17(1852), 366-390.

§7. Theorem 9.26 is in G. H. Hardy & S. Ramanujan (1920) “The normal order of
prime factors of a number n”, Quart. J. Math. 48, 76-92 and the proof we give is in
P. Turán (1934) “On a theorem of Hardy and Ramanujan”, J. London Math. Soc. 9,
274-276. The Erdős-Kac theorem is in P. Erdős & M. Kac (1940). “The Gaussian Law
of Errors in the Theory of Additive Number Theoretic Functions”, American Journal of
Mathematics. 62 (1/4), 738–742.

§8. Theorem 9.29 was first proved by Legendre in 1830. Curiously there seems to
be no way of developing these ideas further to establish that a general reduced residue
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class contains infinitely many primes. Dirichlet’ s proof of this instead is essentially
analytic and can be considered the ultimate version of Euler’s proof. However there are
connections between Dirchlet’s proof and algebraic number theory, especially the zeta
function associated with a ring of integers.

Exercise 4 was first noticed by A. Migotti, “Aur Theorie der Kreisteilungsgleichung”,
Z. B. der Math.-Naturwiss, Classe der Kaiserlichen Akademie der Wissenschaften, Wien,
87, 7-14 (1883). In spite of initial appearances to the contrary the coefficients can get
surprisingly large. Let A(k) denote the absolute value of the largest coefficient of Φk(z).
Schur in a letter to Landau in 1935 showed that the sequence A(k) is unbounded, and
following work of P. Erdős, “On the coefficients of the cyclotomic polynomials”, Bull.
Amer. Math. Soc., 52, 179-181, (1946) and “On the coefficients of the cyclotomic poly-
nomials”, Portugal. Math. 8, 63-71 (1949), it was shown in R. C. Vaughan, “Bounds for
the coefficients of cyclotomic polynomials”, Michigan Math. J. 21, 289-295 (1975) that
there are arbitrarily large n such that

A(n) > exp

(
exp

(
(log 2)

log n

log log n

))
and that this is essentially best possible.
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