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Preface

This book is based on courses at Penn State University. It contains typically enough
material for about thirty six hours of presentations and nine to twelve hours of problem
solving and tutorials. All the exercises have been used at least once for homework or the
basis of examination questions.

One word of warning. This is a subject which demands proofs, and it would be wise
to also have some facility with constructing simple proofs in good English. If one wishes
to understand the reasons for a particular phenomenon this can often only be seen by
understanding why the proof works.

The ultimate aim of the course is to attempt the factorization of rather large num-
bers, for example with 65 or more decimal digits. Thus it is essential the student
has some facility in writing computer programs, and should have available a program-
ming language that facilitates multiple precision calculations, such as Pari-gp https:
//pari.math.u-bordeaux.fr/

vil
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Chapter 1

Background

1.1 Introduction

We are concerned with the basic theory and practice of the factorization of integers
into primes. This combines the development and understanding of some quite deep
mathematics with the creation of detailed computer programs.

It is essential that the reader should have some familiarity with the concept of math-
ematical proof. Factorization algorithms and primality tests give absolute proof for their
assertions, and have to take account of all possibilities. Nevertheless a proof can be very

easy. For example the statement
105 =3.5.7

is a one-line proof of the factorization of 105.

A slightly longer example is the statement that 101 = d.q + r with
d=2,q=50,r=1
d=3,q=33,r=2
d=5q¢g=20,r=1
d=T7,q=14,r =3

which gives a proof that 101 is prime.
How about a not very big number like

1000065617

Is this prime, and if not what are its factors? Anybody care to try it by hand?
And how about somewhat bigger numbers

11111111111111111 17 digits,
1111111111111111111 19 digits.

One of them is prime, the other composite.
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If you want to experiment I suggest using the package PARI which runs on most
computer systems and is available at

https://pari.math.u-bordeaux.fr/

Here is an example where a bit of theory is useful. There is a theorem of Fermat
which says that if p is prime, then 2P~! leaves the remainder 1 on division by p. Now
21000 Jeaves the remainder 562 on division by 1001, so 1001 has to be composite. Checking
21000 might seem difficult but it is actually quite easy.

1000 = 28 + 20 + 26 4 27 4 28 4 29 91000 _ 92927920927 92%92°
and the 22° can be computed by successive squaring, so
92%° = 256, 22" = 2562 = 471, and so on.

Thus any program which can perform double precision multliplication can compute 2P~*
modulo p in linear time.

This is a proofs based course. One is often asked why one needs formal proofs.There
is an instructive example due to J. E. Littlewood in 1912. Let w(x) denote the number
of prime numbers not exceeding x. Gauss had suggested that

Todt
o logt

should be a good approximation to (z)
m(x) ~ li(x).

For all values of z for which 7(x) has been calculated it has been found that
m(z) < li(z).

Here is a table of values which illustrates this for various values of x out to 10%7.
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x m(x) li(x) li(z) — m(z)

2 1 1.04 0.04
10 4 5.12 1.12
102 25 29.08 4.08
103 168 176.56 8.56
10* 1229 1245.09 16.09
10° 9592 9628.76 36.76
106 78498 78626.50 128.50
107 664579 664917.36 338.36
108 5761455 5762208.33 753.33
10° 50847534 50849233.90 1699.90
1010 455052511 455055613.54 3102.54
10t 4118054813 4118066399.58 11586.58
10'2 37607912018 37607950279.76 38261.76
1013 346065536839 346065645809.01 108970.01
1014 3204941750802 3204942065690.91 314888.91
10% 29844570422669 29844571475286.54 1052617.54
1016 279238341033925 279238344248555.75 3214630.75
10'7 2623557157654233 2623557165610820.07 7956587.07
108 24739954287740860 24739954309690413.98 21949553.98
101 234057667276344607 234057667376222382.22 99877775.22
1020 2220819602560918840 2220819602783663483.55 222744643.55
10%! 21127269486018731928  21127269486616126182.33 597394254.33
10%2 201467286689315906290 201467286691248261498.15 1932355208.15
10% 1925320391606803968923 7250186216.00
10% 18435599767349200867866 17146907278.00
102 176846309399143769411680 55160980939.00
10%6 1699246750872437141327603 155891678121.00
10%7  16352460426841680446427399 508666658006.00
So is

m(z) < li(x)
always true?
No! Littlewood in 1914 showed that there are infinitely many values of x for which

m(z) > li(z)!
We now believe that the first sign change occurs when

r =~ 1.387162 x 10! (1.1)

well beyond what can be calculated directly. For many years it was only known that the
first sign change in 7(z) — li(z) occurs for some z satisfying

z < 1010
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The number on the right was computed by Skewes. G. H. Hardy once wrote that this is
probably the largest number which has ever had any practical (my emphasis) value! But
still even now the only way of establishing this is by a proper mathematical proof.

Let me turn back to that table, as it illustrates something else very interesting. So is
it really true that for any 6 > % and all large = we have

m(2) — li(z)] < 27

This is the famous Riemann Hypothesis, the most important unsolved problem in math-
ematics. There is a million dollar prize for a proof, or a disproof. And probably an
automatic professorship at the most prestigious universities for anyone who wins it. By
the way, one might wonder if there is something random in the distribution of the primes.
This is how random phenomena are supposed to behave.

1.2 The integers
Number theory in its most basic form is the study of the set of integers
7 =1{0,+1,+2,..}
and its important subset
N=1{1,2,3,...},

the set of positive integers, sometimes called the natural numbers. The usual rules of
arithmetic apply, and can be deduced from a set of axioms. If you multiply any two
members of Z you get another one. Likewise for N. If you subtract one member of Z

from another, e.g.
173 —192 = —-19

you get a third. But this last fails for N. You can do other standard things in Z, such as
r(y+2) =xy+ 2

and
Ty = yx

is always true.

1.3 Divisibility

To understand factorization we need some concept of divisibility so we start with some
definitions. Given two integers a and b we say that a divides b when there is a third
integer ¢ such that ac = b and we write a|b.

Example 1.1. If alb and b|c, then alc.
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Proof. There are d and e so that b = ad and ¢ = be. Hence a(de) = (ad)e = be = ¢ and
de is an integer. 0

Here are some consequences which are useful. For any a we have 0a = 0, and if ab = 1,
then a = £1 and b = +1 (with the same sign in each case). Also if a # 0 and ac = ad,
then ¢ = d.

Now we can introduce the concept of a prime number

Definition 1.1. A member of N greater than 1 which is only divisible by 1 and itself is
called a prime number.

We will normally use the letter p to denote a prime number.
Example 1.2. 101 s a prime number.

Proof. How to prove this? One has to check for divisors d with 1 < d < 100. Moreover if
d is a divisor, then there is an e so that de = 101, and one of d, e is < v/101 so we only
need to check out to 10. Then we only need to check the primes 2,3,5,7. Obviously 2
and 5 are not divisors and 3 is easily checked, so only 7 needs any work, and this leaves
remainder 3, not 0. ]

Since we are dealing with proofs for facts about N there is one proof method which
is very important. This is the principle of induction. It is actually embedded into the
definition of N. That is, we have 1 € N and 1 is the least member of N, and given any
n € N the next member is n + 1. In this way one sees that N is itself defined inductively.
Without the following fundamental theorem we could pack up and go home.

Theorem 1.1. Fvery member of N is a product of prime numbers.

Proof. 1is an “empty product” of primes, so the case n = 1 holds. Suppose that we have
proved the result for every m with m < n. If n+1 is prime we are done. Suppose n+1 is
not prime. Then there is an a with ajn+1and 1 < a < n+1. Then also 1 < ”TH <n+1.
But then on the inductive hypothesis both a and "T“ are products of primes. O

We can use this to deduce
Theorem 1.2 (Fuclid). There are infinitely many primes.

Proof. We argue by contradiction. Suppose there are only a finite number of primes. Call
them pq, pa, ..., p, and consider the number

m=pips...pn + L.

Since we already know some primes it is clear that m > 1. Hence it is a product of
primes, and in particular there is a prime p which divides m. But p is one of the primes
P1,D2, 3D SO DM — p1p2...pn = 1. But 1 is not divisible by any prime. So our
assumption must have been false. O
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Hardy cites this proof as an example of beauty in mathematics.

There is a different proof of the infinitude of primes which is essentially due to Euler,
and is analytic in nature and quite different from FEuclid’s. It tells us more about the
distribution of primes and is the beginning of the modern approach. Let

S(z) = Z%.

n<x

n+1 T
S(x)ZZ/ %Z 1 %zlogx.

Then

n<x
Now consider

P)=]]a-1/p"

p<w

where the product is over the primes not exceeding x. Then
1 1 1

P(x):H T+~ + 5+ ZZ—Zlogsc.
p<z p p n<zx n

Note that when one multiplies out the left hand side every fraction % with n < x occurs.
Since logxz — oo as x — o0, there have to be infinitely many primes. Euler’s result on
primes is often quoted as follows.

Theorem 1.3 (Euler). The sum
>,
o P
diverges.

Actually one can get something a bit more precise. Take logs on both sides. Thus
— Zlog(l —1/p) > loglog .
p<z

Moreover the expression on the left is

- ls-1/n =3 > o

p<z p<z k=1

Here the terms with & > 2 contribute at most

Il 1 1 1
252 F 5T 7

Hence we have just proved that

1 1
Z— > loglogx — 3

p<w
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1.3.1 Exercises
Divisibility and Factorisation

1. Let a,b,c € Z. Prove each of the following.
(i) ala.
(ii) If a|b and b|a, then a = +b.
(iii) If a|b and b|c, then alc.
(iv) If aclbc and ¢ # 0, then alb.
(v) If a|b, then ac|bc.
(vi) If a|b and a|c, then a|bx + cy for all z,y € Z.

2. The Fibonacci sequence (1202) is defined iteratively by F} = Fy =1, F,41 = Fp,+F,y
(n=2,3,...). Show that if m, n € N satisfy m|F,, and m|F, 1, then m = 1.

3. Prove that if n is odd, then 8|n? — 1.

4. (i) Show that if m and n are integers of the form 4k + 1, then so is mn.
(ii) Show that if m,n € N, and mn is of the form 4k — 1, then so is one of m and n.

(
(

iii) Show that every number of the form 4k — 1 has a prime factor of this form.
iv) Show that there are infinitely many primes of the form 4k — 1.

5. (i) Show that if m and n are integers of the form 6k + 1, then so is mn.
(ii) Show that if m,n € N, and mn is of the form 6k — 1, then so is one of m and n.
(iii) Show that every number of the form 6k — 1 has a prime factor of this form.
(iv) Show that there are infinitely many primes of the form 6k — 1.

6. Show that if p is a prime number and 1 < 5 < p — 1, then p divides the binomial
coefficient (é’)

7. Show that n|(n — 1)! for all composite n > 4.

8. Prove that if 2™ 4 1 is an odd prime, then there is an n € N such that m = 2". These
are the Fermat primes. Fermat thought that all numbers of the form 22" + 1 are prime.
Show that 641]2%" + 1.

9. Prove that if n is a natural number and « is a real number, then
n—1
k
a+—| = .
L nJ |na
k=0

10. Let n € N and p be a prime number, show that the largest ¢ such that p‘|n satisfies
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1.4 The fundamental theorem of arithmetic

We now come to something very important

Theorem 1.4 (The division algorithm). Suppose that a € Z and d € N. Then there are
unique q, r € Z such that a =dqg+r, 0<r <d.

We call ¢ the quotient and r the remainder.

Proof. Let D ={a—dz:x € Z}. Ifa > 0,thena € D, and ifa < 0, then a—d(a—1) > 0.
Hence D has non-negative elements, so has a least non-negative element r. Let ¢ = .
Then a = dg+r, 0 <r. Moreover if r > d, then a = d(q¢+ 1) + (r — d) gives another
solution, but with 0 < r — d < r contradicting the minimality of r.

For uniqueness note that a second solution a = d¢’ + 1/, 0 <1’ < d gives 0 =a —a =
(dg' +71") —(dg+7) =d(¢"—q) + (7" =), and if ¢ # ¢, then d < d|¢' —q| = |7' —r| < d
which is impossible. So ¢’ = ¢ and ' = r. ]

It is exactly this which one uses when one performs long division

Example 1.3. Try dividing 17 into 192837465 by the method you were taught at primary
school.

We will make frequent use of the division algorithm
Theorem 1.5. Given two integers a and b, not both 0, define
D(a,b) ={ax + by :x € Z,y € Z}.

Then D(a,b) has positive elements. Let (a,b) denote the least positive element. Then
(a,b) has the properties

() (a,b)la,

(ii) (a,b)[b,

(111) if the integer ¢ satisfies c|la and c|b, then c|(a,b).

Definition 1.2. The number (a,b) is called the greatest common divisor of a and b.
The symbol (a,b) has many uses in mathematics, so to be clear one sometimes writes

GCD(a,b).

Proof. 1f a is positive, then so is a.1 + b.0. Likewise if b is positive. If a is negative,
then a(—1) + 0.0 is positive, and again likewise if b is negative. The only remaining
case is @ = b = 0 which is expressly excluded. Thus D(a,b) does indeed have positive
elements. Thus (a,b) exists. Suppose (i) is false. By the division algorithm we have
a = (a,b)g +r with 0 < r < (a,b). But the falsity of (i) means that 0 < r. Thus
r=a—(a,b)qg = a— (ax+ by)q for some integers x and y. Hence r = a(1 — zq) + b(—yq).
Since 0 < r < (a, b) this contradicts the minimality of (a,b).

Likewise for (ii). Now suppose c|a and ¢|b, so that a = cu and b = cv for some integers
u and v. Then

(a,b) = ax + by = cux + cvy = c(ux + vy)

so (iii) holds. O
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The GCD has some interesting properties. Here is one

a b o
Example 1.4. We have <W’W) =1.

; ; _ a b a b
To see this observe that if d = <(a7b), (a,b))’ then d|@ and d|@’ and hence d(a,b)|a

and d(a,b)|b. But then d(a,b)|(a,b) and so d|1, whence d = 1.
Here is another

Example 1.5. Suppose that a and b are not both 0. Then for any integer x we have
(a + bx,b) = (a,b). Here is a proof. First of all (a,b)|a and (a,b)|b, so (a,b)|a + bx.
Hence (a,b)|(a + bx,b). On the other hand (a + bx,b)|a + bz and (a + bx,b)|b so that
(a + bx)|a+ bx — bx = a. Hence (a + bx,b)|(a,b)|(a + bx,b) and so (a,b) = (a + bx,b).

Here is yet another
Example 1.6. Suppose that (a,b) = 1 and ax = by. Then there is a z such that x = bz,
y = az. It suffices to show that blx, for then the conclusion follows on taking z = x/b.

To see this observe that there are w and v so that au + bv = (a,b) = 1. Hence x =
aux + bvx = byu + bvx = b(yu + vz) and so blx.

Following from the previous theorem we immediately have the following

Corollary 1.6. Suppose that a and b are integers not both 0. Then there are integers x
and y such that
(a,b) = ax + by.

Later we will look at a way of finding suitable x and y in examples. As it stands the
theorem gives no constructive way of finding them. It is a pure existence proof. As a
first application we establish

Theorem 1.7 (Euclid). Suppose that p is a prime number, and a and b are integers such
that p|lab. Then either pla or p|b.

You might think this is obvious, but look at the following

Example 1.7. Consider the set A of integers of the form 4k + 1. If you multiply two of
them tOg@th@f’, €.g. (4]{71 + 1)(4k2 + 1) = 16k1]{32 + 4]{32 -+ 4k1 + 1= 4(4]{)1]{?2 + ]{31 + k‘g) -+ 1
you get another integer of the same kind. We define a “prime” p in this system if it is
only divisible by 1 and itself in the system. Here is a list of “primes” in A.

5,9,13,17,21,29,33,37,41,49 . ..

9 is one because 3 is not in the system. Likewise 21 and 49 because 3 and 7 are not in
the system. Also the “prime” factorisation of 45 is 5 x 9. Now look at 441. We have

441 = 9 x 49 = 212,

Wait a minute, here factorisation is not unique! The theorem is false in A because
2119 x 49 but 21 does not divide 9 or 49!
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What is the difference between Z and A? Well Z has an additive structure and A
does not. Add two members of Z and you get another one. Add two members of A
and you get a number which leaves the remainder 2 on division by 4, so is not in A.
Amazingly we have to use the additive structure to get something fundamental about
the multiplicative structure. This is of huge significance and underpins some of the most
fundamental questions in mathematics.

FEuclid’s theorem. If a or b are 0, then clearly pla or p|b. Thus we may assume ab # 0.
Suppose that p t a. We know from the previous theorem that there are z and y so that
(a,p) = ax + py and that (a,p)|p and (a,p)|a. Since p is prime we must have (a,p) = 1
or p. But we are supposing that p { a so (a,p) # p, i.e. (a,p) = 1. Hence 1 = az + py.
But then b = abx 4 pby and since p|ab we have p|b as required. O

We can use Euclid’s theorem to establish the following

Theorem 1.8. Suppose that p, p1,pa, ..., p, are prime numbers and

plpipz - - pr.
Then p = p; for some j.

Proof. The case r = 1 is immediate from the definition of prime. Suppose we have
established the r-th case and that we have p|pips ... p.+1. Then by the previous theorem
we have p|p,+1 or p|pips2 ... p,. In the first case we must have p = p,;1. In the second by
the inductive hypothesis we must have p = p; for some j with 1 < j <. ]

We can now establish the main result of this section.

Theorem 1.9 (The Fundamental Theorem of Arithmetic). Factorization into primes is
unique apart from the order of the factors. More precisely if a is a non-zero integer and
a # +1, then

a= (£1)pip2...p;
for some r > 1 and prime numbers py,...,p,, and r and the choice of sign is unique and
the primes p; are unique apart from their ordering.

Proof. Clearly we may suppose that a > 0 and hence a > 2. Theorem tells us that
a will be a product of r primes, say a = p1py...p, with r > 1. It remains to prove
uniqueness. We prove that by induction on r. Suppose r = 1 and it is another product
of primes a = p) ... p,, where s > 1. Then p/|p; and so p} = p; and p,...p. = 1, whence
s = 1 also. Now suppose that » > 1 and we have established uniqueness for all products
of r primes, and we have a product of r + 1 primes, and

/

a=pips.. Pry1 =Dy P
Then we see from the previous theorem that pj = p; for some j and then
Py Py =Pz Pra1/Dj

and we can apply the inductive hypothesis to obtain the desired conclusion. O
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There are various other properties of GCDs which can now be described.
Suppose a and b are positive integers. Then by the previous theorem we can write

a=p...pk, b=pit...pF

where the pq,...p, are the different primes in the factorization of a and b and we allow
the possibility that the exponents r; and s; may be zero. Then it can be checked easily

that .
((l b) mln(rl,sl) . .p;nln(rk,sk)

and this could be taken as the definition of GCD. We can now introduce the idea of the
least common multiple

Definition 1.3. The least common multiple LCM

ab
(a,b)

[a7 b] =

of a and b is defined by

[(l b] max('rl,sl) Hprknax(rk,sk)'

Then LC M]a,b] has the property that it is the smallest positive integer ¢ so that alc
and blc.

At this point it is useful to remind ourselves of some further terminology

Definition 1.4. A composite number is a number n € N with n > 1 which is not prime.
In particular a compositie number n can be written

n =mimes

with 1 < mq <n, and so 1 < my <n also.

1.4.1 Exercises

1. Suppose that I,m,n € N. Prove that (Im,In) = {(m,n).

2. The squarefree numbers are the natural numbers which have no repeated prime factors,
e.g 6, 105. Note that 1 is the only natural number which is both squarefree and a perfect
square. Prove that every n € N can be written uniquely as the product of a perfect
square and a squarefree number.

3. Let a,b,c € Z with a and b not both zero. Prove each of the following.
(i) If (a,b) = 1 and albc, then alc.

(i1) ((ab) <ab)> =1
(iii) (a,b) = (a + cb,b).
(

4. Show that if (a,b) = 1, then (a —b,a +b) = 1 or 2. Exactly when is the value 27
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5. Show that if ad — bc = +1, then (a + b,c+ d) = 1.
6. Suppose that a, b € N. Prove that (a,b)[a,b] = ab.

7. Let a € N and b € Z. Prove that the equations (z,y) = a and zy = b can be solved
simultaneously in integers z and y if and only if a?|b.

8. Prove that if m € N and n € N, then there are integers a, b such that (a,b) = m and
[a,b] = n if and only if m|n.

9. Let a,b,c,d € Z with ab and cd not both 0. Prove that

e = @) (75 5) (G )

10. Prove that there are no positive integers a, b, n with n > 1 such that

(@™ —b")|(a™ 4+ b").

11. Suppose that ny,ns,...,ns € Z are not all 0.

(i) Define GCD(ny,ng, ..., ns) and prove that there exist integers xq,xs, ...,z  such
that nyxq + noxe + - - - + ngzs =GCD(ny, ng, ..., ng).

(ii) Prove that for every j we have GCD(n4,...,ns)|n; and that if d|n; for every j,
then d|GCD(ny, . ..n;).

1.5 Trial Division

As T hope was clear from the example 101 the simplest way to try to factorize a number
n is by trial division. If n has a proper factor my, so that n = mymsy with 1 < m; < n,
whence 1 < my < n also, then we can suppose that m; < msy. Hence m% <mimg=mn

and
my < \/ﬁ

Thus we can try each m; < y/n in turn. If we find no such factor, then we can deduce
that n is prime.

Since the smallest proper divisor of n has to be the smallest prime factor of n we need
only check the primes p with

2<p<n.

Even so, for large n this is hugely expensive in time. The number 7(x) of primes p < x

is approximately
Y da x
w(x) ~ ~
(z) /2 loga  logx
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where log denotes the natural logarithm. Thus if n is about £ bits in size and turns out
to be prime or the product of two primes of about the same size, then the number of
operations will be

2k/2

N )
5 log 2

Still exponential in the bit size.

Trial division is feasible for n out to about 40 bits on a modern PC. Much beyond
that it becomes hopeless.

One area where trial division, or sophisticated variants thereof, are useful is in the
production of tables of primes, or counts of primes such as the value of 7(x). This is how
the table I showed you earlier with gives values of m(z) for x < 10%” was constructed. The
simplest form of this is the ‘Sieve of Eratosthenes’. Construct a [v/N| x |v/N| array.
Here N = 100.

O 1| 2 3| 4| 5| 6] 7] 8] 9
10 (11 (12 13 | 14| 15|16 | 17|18 |19
20121222324 (25]26 |27 |28|29
3013113233 |34(35|36|37]|38]39
40 | 41 |42 | 43 | 44 | 45 | 46 | 47 | 48 | 49
50 | 51 | 52 |53 |54 | 55 | 56 | 5T | 58 | 59
60 | 61 | 62|63 | 64| 65|66 | 67|68 |69
7071|7273 | 74| 75|76 | 77| 78|79
80 |81 |82 |8 |84 |8 |86 |87 | 88|89
90 191 1921931949596 |97 |98 |99

Forget about 0 and 1, and then for each successive element remaining remove the proper
multiples. Thus for 2 we remove 4,6,8,...,98.

X X2 3|X| o(X| 7|X] 9
X1/ X |13/ X |15 (X |17 X |19
X121 /X123 X (25X |27 ]X]29
X131 X |33 |X ]3| X|37]X|39
X141 | X |43 | X |45 | X |47 | X |49
X |51 [ X |53 X |55 X]|57]X |59
X|61]X|63|X]65|X]|67]X]|69
X| 7 X |73 | X |7 | X|77T]X|79
X|81 [ X |8 | X |8 | X|87]X |89
X191 X193 [X]9 | X|97]X|99

Then for the next remaining element 3 remove 6,9, ...,99.
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X

29

X

X |49

7

5 X

25 | X | XX

31X

231 X

2

X

X1 X |13/ X| X[ X[|17]X]19

X| XX

X131 X | X[X[3[X]|37X]| X

X141 | X |43 | X | X | X | 47

X XX |53 X[ [ X]| X[|X]5H9
X161 X| X|[X]65]X]67]X]| X
X7 X |73 | X| X | X|77]X|79
XX X|8|X |8 |X]| X[|X]89
X191 X | X[X]9|X]|97]X| X
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Likewise for 5 and 7.

X X2 3| X]5|X| 7|X]| X
X1 X |13 X[X[|X|17]X]19
XX X123 X[ X|X| X|X]29
X3 X X[ X[ X[X]|37]X]| X
X411 X143 | X [ X[X |47 X | X
XX X3 X[ X|X| X[|X]539
X161 X | X[ X[ X[X]67]X]| X
XM X3 X[X[|X| X[|[X]|79
XX X8| X[X|X]| X|X]89
XXX X[ X[ X[X]97]|X| X

After that the next remaining element is 11 and for that and its successors all the proper
multiples have already been removed. Thus we now have a table of all the primes p < 100.
This is relatively efficient. The sieve of Eratosthenes produces approximately

n

logn

numbers in about

n
Z — ~nloglogn
p<y/n
operations. Another big constraint is storage.
Now by counting the entries that remain one finds that

m(100) = 25,

1.5.1 Exercises

1. Use trial division to factorize 221 and 223.

1.6 Differences of Squares

Here is an idea that goes back to Fermat. Given n suppose we can find integers z and y
so that
n:xQ—yz, 0<y<ux.

Since the polynomial on the right factorises as
(z —y)(z+y)
maybe we have a way of factoring n. We are only likely to try this if n is odd, say

n=2%kk+1
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and then we might run in to
n=2k+1=((k+17>-k=102k+1)

which does not help much. Of course if n is prime, then perforce v+ —y =1 and z +y =
2k + 1 so this would be the only solution. But if we could find a solution with x —y > 1,
then that would show that n is composite and would give a factorization.
Moreover if
n =mimsoe

with n odd and m; < msy, then m; and my are both odd and there is a solution with

ma +my me — My
rT—y=m, r+y=mg, r=—--— 9y = ———
2 2
Example 1.8.
91 = 100 — 9 = 10? — 32,
r=10,y=3, m=r—y=T7my=v+y=13
Example 1.9.

1001 = 2025 — 1024 = 45% — 322
r=45,y=32 m=x—y=13, my=x+y ="7T.
1001 =13 x 77 =17 x 11 x 13.

This method has the obvious downside that 22 = n + y? so already one is searching
among x which are greater than \/n and one could end up searching among that many
possibilities. The chances of solving this easily for large n are quite small. Nevertheless
we will see that this is a very fruitful idea. For example suppose instead of n = 2% — y?
we could solve

22—y =kn
for a relatively small value of £ such that
l<z—y<z+y<kn.
It is not very likely that x — y or x + y are factors of n, but if we could compute
g=GCD(zx+y,n)
then we might find that ¢ differs from 1 or n and so gives a factorization. Moreover there
is a very fast way of computing greatest common divisors.
Example 1.10. Let n = 10001. Then
8n = 80008 = 80089 — 81 = 283% — 9% = 274 x 292.

Now
GCD(292,10001) = 73, 10001 = 73 x 137

We will come back to this, but as a first step we want to explore the computation of
greatest common divisors. We also want to find fast ways of solving equations like

kn = 2% — %
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1.6.1 Exercises

1. Factorise 9991.

1.7 The Floor Function

There is a function which we will use from time to time. This is the floor function. It is
defined for all real numbers.

Definition 1.5. For real numbers o we define the floor function |«| to be the largest
integer not exceeding .

Occasionally it is also useful to define the ceiling function [z] as the smallest integer
u such that x < wu. The difference x — |x| is often called the fractional part of = and
is sometimes denoted by {z}.

Example 1.11. |7| =3, [7] =4, [V2] =1, |-V2] = -2, [-V2] = 1.
The floor function has some useful properties.

Theorem 1.10 (Properties of the floor function). (i) For any x € R we have 0 <
r—|z] <1

(i1) For any x € R and k € Z we have |x + k| = |z] + k.

(111) For any x € R and any n € N we have |x/n| = ||z]|/n].

(iv) For any z,y € R we have |z| + |y] < |z +y] < [z] + [y] + 1.

Proof. (i) For any x € R we have 0 < x — |x| < 1. This is pretty obvious. If z — |z] <0,
then # < |z] contradicting the definition. If 1 < x — |z, then 1 + |z| < z also
contradicting the definition. This also shows that |z is unique.

(ii) For any x € R and k € Z we have |z + k| = |z] + k. One way to see this is to
observe that by (i) we have z = |x]+6 for some 0 with 0 < 6 < 1. Then z+k—|z|—k =6
and since there is only one integer [ with 0 < x+k —1 < 1, and this [ is |« + k| we must
have |z + k| = |z] + k.

(iii) For any 2 € R and any n € N we have |z/n] = ||z]/n]. We know by (i)
that 6 = z/n — |z/n] satisfies 0 < § < 1. Now z = n|z/n| + nf and so by (ii)
|z] = n|z/n]+|nb]. Hence |z|/n = |z/n]|+ |nf|/nand so |x/n] < |x]/n < |z/n]+1
and so |z/n| = ||z]|/n].

(iv) For any z,y € R we have |z]+ |y| < |z+y] < |z]+|y]+1. Put x = [2]+0 and
y=ly] +¢ where 0 <60, < 1. Then |z +y| = |0+ ¢] + [z] + |y] and 0 < O+ ¢ < 2.

[

1.7.1 Exercises

1. Prove that if n is a natural number and « is a real number, then

4] - o,
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2. Let n € N and p be a prime number, show that the largest ¢ such that p'|n satisfies

2[5

h=1

1.8 Notes

§1 Littlewood’s theorem is in J. E. Littlewood, J. E. (1914). “Sur la distribution des
nombres premiers”, Comptes Rendus, 158, 1869-1872. The number is computed in
D. Stoll, P. Demichel (2011), “The impact of ((s) complex zeros on 7(z) for z < 10107,
Mathematics of Computation, 80 (276), 2381-2394. Skewes work is in S. Skewes (1933),
“On the difference 7(z) —li(x)”, Journal of the London Mathematical Society, 8, 277-283
and S. Skewes (1955), “On the difference m(x) — li(x) (II)”, Proceedings of the London
Mathematical Society, 5, 48-70.

The seminal paper of B. Riemann (1860) stating a connection between 7 and the zeros
of the Riemann zeta function is “Uber die Anzahl der Primzahlen unter einer gegebenen
Grosse”, Monatsberichte der Koniglichen Preussichen Akademie der Wissenschaften zu
Berlin aus dem Jahre 1859, 671-680. The first proofs of the prime number theorem are by
J. Hadamard (1896), “Sur la distribution des zéros de la fonction ((s) et ses conséquences
arithmétiques”, Bull. Soc. Math. France 24, 199-220 and Charles-Jean Etienne Gustave
Nicolas, baron de la Vallée Poussin (1896), “Recherches analytiques sur la théorie des
nombres premiers”, I-III, Ann. Soc. Sci. Bruxelles 20, 183-256,281-362, 363-397. The
strongest form we currently know of the prime number theorem which does not assume
any unproven hypothesis is in N. M. Korobov (1958), “Weyl’s estimates of sums and
the distribution of primes”, Dokl. Akad. Nauk SSSR 123, 28-31 and “Estimates of
trigonometric sums and their applications”, Uspehi Mat. Nauk, 13(4 (82)), 185-192, and
I. M. Vinogradov (1958), “A new evaluation of ((1+7:t)”, Izv. Akad. Nauk SSSR 22, 161-
164, again independently (Vinogradov is a little hand-wavy and, presumably mistakenly,
omits the loglog factor). The result is

og x)3/°
m(@) ~lifz) < wexp (_%)

for some positive constant C'.
Fermat’s theorem is and its generalizations due to Euler is discussed in Chapter 3.

§2 The usual approach to the definition of N and Z is to assume N satisfies a version of
the Peano axioms

N1. 1 is a natural number.

N2. Every natural number has a successor which is also a natural number.

N3. 1 is not the successor of any natural number.

N4. If the successor of x equals the successor of y then z =y



1.8. NOTES 19

N5. Induction Axiom. If a statement S(n) is true for n = 1, and if for each n € N
the truth of S(n) implies the truth for the successor of n, then the statement is true for
every n € N.

There is an increasing tendency to include 0 in N and make it play the role of 1 in
the above axioms, and then define 1 to be the successor of 0. Perhaps the most satisfying
way of defining N is due to Von Neumann|

One can also axiomatise Z by supposing that there are two operations + and x and
an order relationship < on pairs of elements of Z such that for every a, b, c € Z we have

71 Closure. a +b € Z, a x b € Z.

72 Associativity. a4+ (b+c¢) = (a+b)+ ¢, a x (b x c) = (a x b) x c.

73 Commutativity. a +b=0+a,a x b="b x a.

74 Identities. There are elements 0 and 1 € Z such that a +0 =a, a X 1 = a.

75 Inverse. Given a € Z there is an element (—a) € Z such that a + (—a) = 0.

76 Distributivity. a x (b+¢) = (a x b) + (a X ¢) and (a+b) x ¢ = (a x ¢) + (b X ¢).

77 No zero divisors. If a x b =0, then a =0 or b = 0.

78 Order. Exactly one of a < b, a = b, b < a holds.

79 Order +. If a < b, then a+c < b—+c.

710 Order x. If a <band 0 < ¢, then a X c < b X c.

By dividing the ordered pairs (m,n) € N? into equivalence classes by putting in the
same class those (m,n), (m/,n') for which m +n’ = m’ + n one can construct Z from
N. One can then spend considerable effort deducing all the usual rules of arithmetic
from these axioms. For more details see the Wikipedia articles on Natural Numbers and
Integers.

§3 The Dirichlet box principle is usually attributed to a paper of J. P. G. L. Dirichlet
from 1834, although it does appear to have been known as early as 1624. See https:
//en.wikipedia.org/wiki/Pigeonhole_principle

§4 The division algorithm is in Euclid, Book VII, Proposition 1.
The fundamental theorem of arithmetic in special cases is buried in Euclid Book VII
and Book IX.

§5 Trial division was first described by Fibonacci in his book “Liber Abaci” of 1202.


https://en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Pigeonhole_principle
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Chapter 2

Euclid’s algorithm

2.1 Euclid’s algorithm

The question arises. We know that given integers a, b not both 0, there are integers x
and y so that
(a,b) = ax + by. (2.1)

How do we find  and y? A method for solving this problem, known as Euclid’s algorithm,
first appeared in Euclid’s Elements more than 2000 years ago. Moreover this solution
gives a very efficient algorithm and it is still the basis for many numerical methods in
arithmetical applications. For example in factorisation routines.

We may certainly suppose that a > 0 and b > 0 since multiplying either by (—1) does
not change the (a,b) - we can replace x by —z and y by —y. We can also suppose that
b < a, and in practice that b < a. For convenience of notation put ro = b, r_; = a. Now
apply the division algorithm iteratively as follows

r_y =roq1 +r1, 0<r <,
To = T1q2 + T2, 0<7“2<7“1,

ri="r2q3+ 13, 0<r3 <7y,

Ts—3 = Ts—2Qs—1 + Ts_1, 0< Ts—1 < Ts—2,

Ts—2 = T's—1(s-

That is, we stop the moment that there is a remainder equal to 0. This could be r; if
bla, for example, although the way it is written out above it is as if s is at least 3. The
important point is that because r; < r;_;, sooner or later we must have a zero remainder.

Euclid proved that (a,b) = r,_1. This is easy to see. First of all we know that (a,b)|a
and (a,b)|b. Thus from the first line we have (a,b)|r;. Repeating this argument we get
that successively (a,b)|r; for j = 2,3,...,s—1. On the other hand, starting at the bottom
line rs_1|rs_o, 7s_1|7s—3 and so on until we have r,_1|b and 7r,_;|a. Recall that this means

21
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that rs_1|(a,b). Thus we have just proved that
rs—1|(a,b), (a,b)|rs_1

and so r5_1 = (a,b).

Example 2.1. Let a = 10678, b = 42

10678 = 42 x 254 + 10
42 =10x 4+ 2
10 =2 x 5.

Thus (10678, 42) = 2.

But how to compute the = and y in (a,b) = ax + by? We could just work backwards
through the algorithm using back substitution, but this is tedious and computationally
wasteful since it requires all our calculations to be stored. A simpler way is as follows.

Algorithm 2.1 (Extended Euclid Algorithm). Define r_-1 = a, ro = b, x_1 = 1,
y_1 =0, 20 =0, yg =1 and then lay the calculations out as follows.

1 ="Toq1 + 71, T = T_1 — 1%, Y1 =Y-1— Q1Yo
o = T1q2 + T2, Tg = Ty — @21, Y2 = Yo — G211

1 = T2Q3 + T3, T3 = T1 — (3T, Ys = Y1 — qs¥Y2

Ts—3 = Ts—20s—1 T Ts—1, Ts—1 = Ts-3 — ¢s—1Ts5-2, Ys—1 = Ys—3 — Qs—1Ys—2
Ts—2 = Ts-1(s-

Now the claim is that we have x = x5 1, Y = Ys_1-

More generally we have
r; = ar; + by, (2.2)

and again this can be proved by induction. First, by construction we have
roy=ar_1+by_1, 19=axy+ byo.
Suppose we have established for all j < k. Then
Tk+1 = Tk—1 — qk+1Tk

= (azp—1 + byr—1) — qer1(axy + byy)
= aZp1 + Ykt

In particular
((Z, b) =Ts—1 = ATs—1 + bys—l-

Hence laying out the example above in this expanded form we have
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r1= 106787 To = 42, r1 = 1, To = O, Y1 = O, Yo = 1,

10678 =42 x 254+ 10, 21 =1—-254x0=1, y; =0—1x 254 =—-254
42 =10 x 4 + 2, ro=0—4x1=—4, y2:1—4><(—254):1()17
10 =2 x 5.

(10678,42) = 2 = 10678 x (—4) + 42 x (1017).

It is also possible to set this up using matrices. Lay out the sequences in rows

r-1, -1, Y-1
To, Zo, Yo

Now proceed to compute each successive row as follows. If the s-th row is the last one to
be computed, calculate gs = |rs_1/rs]. Then take the last two rows computed and pre
multiply by (1, —¢s)

(17_(15) (Ts—la Ts—1, Ys—1

= (7’3+1, Ts41, ys+1>
r57 xS? yS )

to obtain the s + 1-st row.

Example 2.2. Let a = 4343, b = 973. We can lay this out as follows

4343 1 0
973 0 1
451 1 —4

71 -2 9

25 13 —58
21 =28 125
4 41 —183
1 =233 1040

T = DN DN

Thus (4343,973) = 1 = (—233)4343 + (1040)973.

2.1.1 Exercises

1. Find integers x and y such that 182x + 1155y = (182, 1155).
2. Find integers x and y such that 1547z + 2197y = (1547, 2197).

3. Find integers m and n so that

4709m + 6188n = (4709, 6188).
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4. Let {F, : n = 0,1,...} be the Fibonacci sequence defined by Fy = 1, F} = 1,
Fn+1 = Fn + Fn—l and let

1++5

0=—

= 1.6180339887498948482045868343656 . . . .

(i) Prove that
en _ (_9>7n
Vi
(ii) Suppose that a and b are positive integers with b < a and we adopt the notation used

in the description of Euclid’s algorithm above. Prove that for £ =0,1,...,s— 1 we have
F, <re_1-; and

F, =

1
s<1-+ —oga\/S.
log 0

This shows that Euclid’s algorithm runs in time at most linear in the bit size of min(a, b).

2.2 Linear Diophantine Equations

We can use Euclid’s algorithm to find the complete solution in integers to linear dio-
phantine equations of the kind
ax + by = c.

Here a, b, ¢ are integers and we wish to find all integers  and y which satisfy this.
There are some obvious necessary conditions. First of all if @ = b = 0, then it is not
soluble unless ¢ = 0 and then it is soluble by any = and y, which is not very interesting.
Thus it makes sense to suppose that one of a or b is non-zero. Then since (a, b) divides
the left hand side, we can only have solutions if (a,b)|c. If we choose x and y so that
ax + by = (a,b), then we have

alwe/(a, b)) + blye/(a,5)) = (az + by)e/(a,b) = ¢

so we certainly have a solution of our equation. Call it zq, 9. Now consider any other
solution. Then
ar + by —axg — by =c—c=0.

Thus
a(x —xg) = blyo — ).
Hence .
a
@i " @Y
Then since

(@ @) ="

we have by an earlier example that yo —y = zﬁ and r —xg = z% for some integer z.
But any x and y of this form give a solution, so we have found the complete solution set.
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Theorem 2.1. Suppose that a and b are not both 0 and (a,b)|c. Suppose further that
axg + byo = ¢. Then every solution of

ar +by =c

s given by

n b a
T =10+ 2— =Y — Z—
0 ((l, b)? ) Yo

(a,b)

where z is any integer.

One can see here that the solutions x all leave the same remainder on division by ﬁ

and likewise for y on division by (a;“b) This suggests that there may be a useful way of
classifying integers.

2.2.1 Exercises
1. Find all pairs of integers x and y such that 922z + 2163y = 7.
2. Find all pairs of integers x and y such that 812z 4 2013y = 5.

3. Find (1819, 3587), and find the complete solution in integers x and y to 1819243587y =
(1819, 3587).

4. Discuss the solubility of a1z 4+ asxs + - - - + asxs = ¢ in integers.

2.3 An application to factorization

Here is an algorithm due to R. S. Lehmen and based on differences of squares which is a
small improvement on trial division.

Algorithm 2.2 (R. S. Lehman). After trial division this computes a sequence of pairs
t,x.

1. Apply trial division with d =2,3,..., d < n'/3.

2. For 1 <t<n'?+1 consider the numbers x with

Viatn < x < /4tn + n?/3.

Check each x* — 4tn to see if it is a perfect square y* (compute 4tn — [v/4tn]?).
3. If there are x and y such that

x? — dtn = o,

then compute

GCD(x +y,n).

4. If there is no t for which there are x and y, then n is prime.
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Example 2.3. Let n = 10001. Then |(10001)"/3] = 21.
Trial division with d = 2,3,5,7,11,13,17,19 finds no factors.
Lett =1, so that 4tn = 40004. Then

|V4n| = 200, [V/4n 4+ n2/3] = | (40445)/%| = 201,

(201)* = 40401, 397 # ¢°.
Let t =2, so that 4tn = 80008. Then

|V/8n| = 282, |V/8n + n2/3] = [(80449)"/2| = 283,

r = 283, (283)% — 8n = 80089 — 80008 =81 =9 y =9, v +y = 292,
(292,10001) = 73.
The proof that Lehman’s algorithm works depends on a subject called diophantine
approzimation. The normal way in to this subject is via a topic called continued fractions,

which in turn has some connections with Euclid’s algorithm. Fortunately we can take a
short cut by appealing to a simple theorem of Dirichlet.

Theorem 2.2 (Dirichlet). For any real number o and any integer Q > 1 there exist
integers a and q with 1 < q < Q) such that

1
= q(@Q+1)

As an immediate consequence of casting out all common factors of a and ¢ in a/q we
have

a
a__
q

Corollary 2.3. The conclusion holds with the additional condition (a,q) = 1.

Before embarking on the proof of the above we use it to show that Lehman’s algorithm
works.

Proof of Lehman’s algorithm. We have to show that when there is a divisor d of n
with n'/3 < d < n'/2, then there is a t with 1 <t <n'/3+1 and z, y such that

dtn < 22 < dtn +n?3, 2% — y? = 4tn.

We use Dirichlet’s theorem with

n d
&:ﬁ,Q:\‘mJ

Since d > n'/? we have @ > 1. Thus we know that there are a € Z, ¢ € N such that
1<¢<@and

1 n1/3

SCJ(Q+1) = qd’

n a
a?z q
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and so
_ d’ <
’dq a n'/
Let n n
= Eq—l—ad, Y= ‘Eq—ad‘,t:aq.
Then 2
r? = y> —q¢* 4 2nqa + a*d* = y* + 4tn.
Moreover
yz < n2/3
and
t=uaq < q +n1/3q Q2 1/39<nl/3—i-1.
d? d~ d? d —

We now return to the proof of Dirichlet’s theorem.

Proof. Let I,, denote the interval [ TS Qil) and consider the () numbers

{a}, {2a}, ..., {Qa}.

(Here we use {*} = % — |*] to denote the “fractional” part). If one of these numbers
say {qa}, lies in I;, then we are done. We take a = |ga| and then 0 < g —a < Q+1

Similarly when one of the numbers lies in I, then 1 — < qa — |ga] < 1, whence

Q+1
—ﬁ < ga— (|ga] +1) < 0 and we can take a = |ga| + 1.
When neither of these situations occurs the () numbers must lie in the () — 1 intervals
Iy, ..., Ig, so there must be at least one interval which contains at least two of the numbers
(the pigeon hole principle, or box arqument, or Schubfachprinzip). Thus there are ¢, qo
with 1 < gy such that [(agz — [agz]) — (aq1 — [aq])| < oi7. We put ¢ = (g2 — 1),

a = (lag:| = aq]). 0

2.3.1 Computing Square Roots

In applying Lehman’s algorithm, and in variants of this method we shall study later, it
is necessary sometimes for a positive integer to check whether it is a perfect square, or
more generally given n to find |\/n], and if necessary check whether or not n = |y/n%.
In any case, the simplest general method is to compute /n to sufficient precision. Now
if n is not a perfect square, then

L<n®—[Vn]*=(n—[va])(n+ [vVn])

and so
1

v =
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Moreover we have equality in the special case n = m? + 1. Thus to be sure that n is not
a perfect square we need to compute n — L\/ﬁj to a precision

1

That is, to a relative precision compared with /n of

1
= Valvn + Va))

In other words we need at least as many decimal places after the decimal point as before
it. Thus we need a rapid way of computing square roots. Fortunately many software
packages do include such routines, but one should check. Try taking the square root of
1019 — 1, and then the floor function. The answer should be less than 107,

Fortunately there is an incredibly rapid way of computing square roots, which goes
back to Newton, and is what one would get if one applied the Newton-Raphson method
to computing the positive solution to z? —n = 0.

Newton’s Algorithm. Let n be a positive integer and take xq1 to be a suitable guess to
V/n. One could get away with a rather poor guess, but we will suppose that \ is a constant
with

1<A<14+V2

and assume that

A < ap < AW,

1 n
$j+1:§ J?j‘i‘; .
J

There are various observations we can make.
1. It s a simple induction on j to show that x; > 0 for every j € N.
2. Squaring both sides and multiplying out gives

Then define inductively

1
w2 == (27 4 2n +n’z;?),

4

x?H —n = Z(x? —2n + n2:1:j’2)
1

= (& —n/z;)* > 0.

Hence for j > 2 we have 3:? >n.
3. Again rearranging the original definition gives, for j > 2
2
Z; n Zlfj —n
PO Ty %, 2w T

Tjp1 < 5,




2.3. AN APPLICATION TO FACTORIZATION 29

so {x; : j > 2} is decreasing and bounded below.
4. By the monotonic convergence theorem

(= lim z;
j—00

ex1sts.
5. By 1. and 2. for j > 2 we have :13? > n. Thus, since { = inf{x; : j > 2} we have
0> \/n.

6. Now adverting to the definition of x;, the combination theorem for limits gives

(= lim ;41
J—00

! 1 n n
= lim - |z, + —
j—oo 2 J 2512']'

1 n

— (¢ _>
G

Solving for ¢ we have
1 n 9
4 2_6’ ' =n
7. By 2., when j > 1 we have
(27 —n)?

2 —

so that for j > 2

(- V) (z; + /n)?
e L v PR 1
Vvi\® (z = Vi)
(1 * _) e+ i)
(z; — /1)
NG

IN

since by 2. we have x; > vn. Thus

Hence by induction on 7, when j > 2 we have

0<$J‘+1—\/ﬁ< 1 (m—vn\"
vnooo T 21 '
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Morever, by 2.,
1
T3 —n= Z<x1 —n/r)?

and then by the initial choice of x1 we have

|71 —2n/$1| < 0v/n
where A1/
0="— < 1.
2
Hence
0<a?—n<6?
and so

O<Ij+1_\/ﬁ<92j
- N

The convergence is doubly exponential. Note that with iterative methods of this kind,
when one does arithmetic with real numbers on a computer, they are stored as approx-
imations, and one has to be concerned with accumulated rounding errors. Fortunately
with the above method there are typically only about loglogn steps to achieve a suitable

approximation.

2.3.2 Exercises

Find a non-trivial factor of 19109.

Find a non-trivial factor of 39757.

Find a non—trivial factor of 238741

Find a non-trivial factor of 2048129.

Find a non-trivial factor of 3215031751.

Find a non-trivial factor of 9912409831

Find a non-trivial factor of 37038381852397.
Find a non-trivial factor of 341550071728321.

O N s W

2.4 Notes

§1. The equation (2.1) is called Bézout’s identity, and is in E. Bézout (1779), Théorie
générale des équations algébriques, Paris, Ph.-D. Pierres. Euclid’s algorithm is in Book

VII, Propositions 1 and 2.

§3. The algorithm described here is extracted and simplified from R. Sherman Lehman,
“Factoring large integers”, Math. Comp., 28(1974), 637-646. The proof we give based
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on Dirichlet’s theorem is simpler. See also F. W. Lawrence, “Factorisation of numbers”,
Messenger of Math., 24(1895), 100-109. For the history of cognate methods see the notes
to Chapter [8]

A significant part of this course will be to develop a technique which speeds up con-
siderable the process of finding ¢, x and y to satisfy x? — y? = 4tn for very large n.

There is an alternative method which is slower than Newton’s method for extracting
squareroots, but which has the advantage that it leads directly to m = |y/n] and so
enables an immediate check on whether n is a perfect square. This method simply extracts
the digits of m to a given base. There is a description of it at https://en.wikipedia.
org/wiki/Methods_of_computing_square_roots#Digit-by-digit_calculation


https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Digit-by-digit_calculation
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Digit-by-digit_calculation
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Chapter 3

Congruences and Residue Classes

3.1 Residue Classes

We now introduce a topic that was first developed by Gauss.

Definition 3.1. Let m € N and define the residue class ¥ modulo m by
T={xe€Z:m|(x—r)}

By the division algorithm every integer is in one of the residue classes

0,1,...,m—1.
This is often called a complete system of residues modulo m.

The remarkable thing is that we can perform arithmetic on the residue classes just as
if they were numbers.

The residue class 0 behaves like the number 0. The reason is that 0 just consists of
the integral multiples of m and adding any one of them to an element of the residue class
7 does not change the remainder. Thus for any r

0+7=7=7+0.

Suppose that we are given any two residue classes 7 and 5 modulo m. Let ¢t be the
remainder of » + s on division by m. Then each element of 7 and s is of the form
r + max and s + my respectively, and we know that » + s = t + mz for some z. Thus
r+mx—+s+my=t+m(z+x+y)isin ¢, and it is readily seen that the converse is
true. Thus it makes sense to write 7 + 5 = ¢, and then we have 7 +5 =5+ T.

One can also check that

T+ —=r=0.

In connection with this there is a notation that was introduced by Gauss.

33
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Definition 3.2. Let m € N. If two integers x and y satisfy m|x — y, then we write
x =1y (mod m)
and we say that x is congruent to y modulo m.

Here are some of the properties of congruences.
=z (mod m),

x=y (mod m) iff y =z (mod m),
x=y (mod m),y =z (mod m) implies z = z (mod m).

These say that the relationship = is reflexive, symmetric and transitive. Thus congruences
modulo m partition the integers into equivalence classes. [ leave their proofs as an
exercise.

One can also check the following

If 2 =y (mod m) and z =t (mod m), then x + z = y +t (mod m) and zz = yt
(mod m).

If z =y (mod m), then for any n € N, 2" = ¢ (mod m) (use induction on n).

If f is a polynomial with integer coefficients, and x =y (mod m), then f(z) = f(y)
(mod m).

Wait a minute, this means that one can use congruences just like doing arithmetic on
the integers!

Here is a very useful result that begins to tell us something about the structure that
we have just created.

Theorem 3.1. Suppose that m € N, k € Z, (k,m) =1 and
@1, s, ..., G
form a complete set of residues modulo m. Then so does
kay, kag, . .., kapy,.

Proof. Since we have m residue classes, we need only check that they are disjoint. Con-
sider any two of them, ka; and ka;. Let ka; + mz and ka; + my be typical mem-
bers of each class. If they were the same integer, than ka; + ma = ka; + my, so that
k(a;—a;) = m(y—x). But then m|k(a; —a;) and since (k, m) = 1 we would have m|a; —a;
so a; and @; would be identical residue classes, which would contradict them being part
of a complete system. [

An important role is played by the residue classes r modulo m with (r,m) = 1. In
connection with this we introduce an important arithmetical function ¢, called Euler’s
function.
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Definition 3.3. A real or complez valued function defined on N is called an arithmetical
function.

Definition 3.4. Euler’s function ¢(n) is defined to be the number of v € Nwith1 <z <n
and (x,n) = 1.

Example 3.1. Since (1,1) = 1 we have ¢(1) = 1.

If p is prime, then the x with 1 < x < p — 1 satisfy (x,p) = 1, but (p,p) = p # 1.
Hence ¢(p) =p — 1.

The numbers x with 1 < x < 30 and (x,30) =1 are

1,7,11,13,17,19, 23,29,
so ¢(30) = 8.

Definition 3.5. A set of ¢(m) distinct residue classes T modulo m with (r,m) = 1 is
called a reduced set of residues modulo m.

One way of thinking about this is to start from a complete set of fractions with
denominator m in the interval (0, 1]

1 2 m
_’_,...’_
m’ m m

Now remove just the ones whose numerator has a common factor d > 1 with m. What is
left are the ¢(m) reduced fractions with denominator m.

Suppose instead of removing the non-reduced ones we just write them in their lowest
form. Then for each divisor k£ of m we obtain all the reduced fractions with denominator
k. In fact we just proved the following.

Theorem 3.2. For each m € N we have

> (k) =m.

k|m

Example 3.2. We have ¢(1) =1, ¢(2) = 1, ¢(3) = 2, ¢(5) = 4, ¢(6) = 2, ¢(10) = 4,
6(15) = 8, $(30) = 8 and

O(1) + $(2) + B(3) + (5) + B(6) + 6(10) + B(15) + $(30) = 30.
Now we can prove a companion theorem to Theorem for reduced residue classes.
Theorem 3.3. Suppose that (k,m) =1 and that
ai, Gz, - - ., Gp(m)
form a set of reduced residue classes modulo m. Then
kay, kay, ..., kagm)

also form a set of reduced residues modulo m.
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Proof. In view of the earlier theorem the residue classes ka; are distinct, and since
(aj,m) = 1 we have (kaj,m) = 1 so they give ¢(m) distinct reduced residue classes,
so they are all of them in some order. O

We can now begin to examine the structure of complete and reduced systems of residue
classes.

Theorem 3.4. Suppose that m, n € N and (m,n) =1 and consider the mn numbers
m +ym

with 1 < x <m and 1 <y < n. Then they form a complete set of residues modulo mn.
If instead x and y are further restricted to (x,m) = 1 and (y,n) = 1, then they form a
reduced set of residues modulo mn.

Proof. In the unrestricted case we have mn objects. Moreover if xn + ym = a2'n + y'm
(mod mn) then we would have zn = 2'n (mod m), so that z = 2’ (mod m) and thus
x = 2/, and likewise y = vy'. Hence we have mn distinct residues modulo mn and so
a complete set. In the restricted case the same argument shows that the xn + ym are
distinct modulo mn. Moreover (zn + ym,m) = (zn,m) = (x,m) = 1 and likewise
(xn +ym,n) = 1, so (zn + ym,mn) = 1 and the xn + ym all belong to reduced residue
classes. Now let z be an arbitrary reduced residue modulo mn. Choose 2’ and 1’ so that
2'n + y'm = 1 and choose z € 2’z modulo m and y € v’z modulo n. Then one can
check that zn+ym = 2’zn+y'zm = z (mod mn) and hence every reduced residue class
modulo mn is of the form zn + ym with (z,m) = (y,n) = 1. O

Example 3.3. Here is a table of xn +ym (mod mn) when m =5, n = 6.

x| 1 2 3 4] 9

11 17 23 29| 5
16 22 28 4| 10
21 27 8 9|15
2 2 8 1/ 20
1 7 13 1925
6 12 18 24| 30

D iAo |~

The 30 numbers 1 through 30 appear exactly once each. The 8 reduced residue classes
occur precisely in the intersection of rows 1 and 5 and columns 1 through 4.

Immediate from Theorem we have

Corollary 3.5. If (m,n) =1, then ¢(mn) = ¢(m)p(n).
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Definition 3.6. If an arithmetical function f which is not identically 0 satisfies
f(mn) = f(m)f(n)
whenever (m,n) =1 we say that f is multiplicative.

Corollary 3.6. Fuler’s function is multiplicative.

This enables a full evaluation of ¢(n). If n = p*, then the number of reduced residue
classes modulo p* is simply the number of z with 1 < z < p* and p t x. This is
p¥ — N where N is the number of z with 1 < z < p* and p|z, and N = p*~!. Thus
o(p*) = p* — p*~1 = p*(1 — 1/p). Putting this all together gives

Theorem 3.7. Let n € N. Then
1
on)=n]](1- »

where, when n =1 we wnterpret the product as an “empty” product 1.

Example 3.4. We have ¢(9) = 6, ¢(5) = 4, ¢(45) = 24. Note that ¢(3) = 2 and
$(9) # ¢(3)*.

Here is a beautiful and as we shall see, useful, theorem.
Theorem 3.8 (Euler). Suppose that m € N and a € Z with (a,m) =1. Then
a®™ =1 (mod m).

Proof. Let
ai,ag, ... ,a¢(m)

be a reduced set of residues modulo m. Then
aay,aas, . . . ,aa¢(m)
is another. Hence

10y . . . p(m) = AG10G3 - . . Adgm) (mod m)

=aas... a¢(m)a¢(m) (mod m).
Since (a1az . . . ag(m), m) = 1 we may cancel the

aias . .. a¢(m).



38 CHAPTER 3. CONGRUENCES AND RESIDUE CLASSES

Corollary 3.9 (Fermat). Let p be a prime number and a an integer. Then
a? = a (mod p).

If pta, then
a” ' =1 (mod p).

One might hope that Fermat’s theorem could give a necessary and sufficient condition
for primality. Unfortunately it is possible that

a” =1 (mod n)
when n is not prime, although this is rare. Examples of
2"1 =1 (mod n)

are n = 341, 561, 645. Such n are called pseudoprimes. There are only 245 less than 10°,
compared with 78498 primes. Moreover

3311 =56 # 1 (mod 341)

suggests a possible primality test. Given n try trial division a few times, say for d =
2,3,5,7 and then check successively

a” =1 (mod n)
for a = 2, 3,5, 7. Unfortunately one can still have false positives. Thus
561 = 3.11.17

satisfies
a®® =1 (mod 561)

for all a with (a,561) = 1.

Definition 3.7. A composite n which satisfies

a” =1 (mod n)

for all a with (a,n) =1 is called a Carmichael number

There are infinitely many Carmichael numbers. The smallest is 561 and there are
2163 of them below
25 x 10,

Captain: I am never known to quail At the fury of a gale, and I'm never, never sick at sea!
All: What, never?
Captain: No, never!
All: What, never?
Captain: Hardly ever!
Gilbert & Sullivan, HMS Pinafore, 1878.
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Definition 3.8. Forn € N define M(n) = 2" — 1. A Mersenne prime is a prime of the
form M(n).
Note that if n is composite, n = ab, then M (n) is composite,
M(ab) = (20 —1)(2°0~D ... 429 4 1),
Thus for M (n) to be prime it is necessary that n be prime.

Example 3.5. We have

3=2%-1,
7T=2-1,
31=2"-1
127=2"—1.

Howewver that is not sufficient

211 1 =2047 = 23 x 9.

3.1.1 Exercises

Fuler’s function, congruences
1. Prove that if m, n € N and (m,n) = 1, then m®™ + n?™ =1 (mod mn).

2. For which values of n € N is ¢(n) odd?
3. Find all n such that ¢(n) = 12.

4. Show that if f(z) is a polynomial with integer coefficients and if f(a) =k (mod m),
then f(a+tm) =k (mod m) for every integer ¢.

5. Let f(z) denote a polynomial of degree at least 1 with integer coefficients and positive
leading coefficient.
(i) Show that if f(xg) =m > 0, then f(x) =0 (mod m) whenever x = 25 (mod m).
(ii) Show that there are infinitely many x € N such that f(z) is not prime. 6.

Suppose that my,ms € N, (my,my) =1, a,b € Z. Prove that a =b (mod m;) and a = b
(mod my) if and only if @ = b (mod mymsy). 7. Prove that when a natural number is

written in the usual decimal notation, (i) it is divisible by 3 if and only if the sum if its
digits is divisible by 3 and (ii) it is divisible by 9 if and only if the sum if its digits is
divisible by 9.5. Prove that for any integer n

(i) n” — n is divisible by 42,

(i) n'3 — n is divisible by 2730.
8. Prove that if m is an odd positive integer, then the sum of any complete set of residues

modulo m is 0 (mod m). If m is any integer with m > 2, then prove the analogous result
for any reduced system of residues modulo m.
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9. The numbers F,, = 22" + 1 for n > 0 are called Fermat numbers. F, through F, are
prime. Fermat had conjectured that F), is always prime.

(i) Show that 641|F; (Euler 1732).
We now know that Fy, ..., Fig are composite and it is now conjectured that there are no
further Fermat primes!

Suppose that p is a prime with p|F,, and let e denote the smallest positive integer
such that 2° =1 (mod p).

(ii) Show that e exists and e|2" .

(iii) Show that e { 2".

(iv) Show that p =1 (mod 2"1).

(v) Prove that

F,—2=F, (F,o1—2)=F,1...FiF,

and deduce that if m # n, then (F,,, F,,) = 1.
10. Prove that (i) if (a,m) = (a — 1,m) = 1, then

l+a4a®+---+a® ™1 =0 (mod m),

and

(ii) prove that every prime other than 2 or 5 divides infinitely many of the integers 1,
11, 111, 1111,. ...

11. Prove that if p is prime, and a, b € Z, then

(a+0b0)P =a? + 1P (mod p).

12. (i) Prove that if p is an odd prime and 0 < k < p, then (assuming 0! = 1) (p—k)!(k —
! = (=1)* (mod p).
(ii) Prove that if p=1 (mod 4), then the congruence 2 +1 =0 (mod p) is soluble.

13. Write a program to compute 2"~ ! (mod n) and apply it to 12341137 and 12341141
to determine which one is certainly composite.

14. A “probable prime” p is a number such that a?~! =1 (mod p) for a = 2,3,5,7. For
each of the numbers n with 100000000000 < n < 100000000025 list the ones which are
probable primes and for those which are not list the values of a for which the test fails.

15. Prove that when a natural number is written in the usual decimal notation, (i) it is
divisible by 3 if and only if the sum if its digits is divisible by 3 and (ii) it is divisible by
9 if and only if the sum if its digits is divisible by 9.

16. Show that the last decimal digit of a perfect square cannot be 2,3,7 or 8.
17. Prove that, for any integer a, 6|a(a + 1)(2a + 1).

18. Prove that any fourth power must have one of 0, 1, 5, 6 for its unit digit.
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19. Let A = {aq,as,...,a,} be a sequence of n integers (not necessarily distinct). Show
that some non-empty subsequence of A has a sum which is divisible by n.

20. Let a, b, and zy be positive integers and define x,, iteratively for n > 1 by z, =
ax,_1 + b. Prove that not all the x,, are prime.

21. The Mobius function p(n) is defined as follows. If there is a prime p such that p?|n,
then u(n) = 0. If n = p;...p where the p; are distinct, then p(n) = (—1)* (the case
k=0 corresponds to n = 1).

(i) Prove that p is a multiplicative function.

(ii) Prove that f(n) = Z p(m) is multiplicative. Here the sum is over all positive
mln
divisors m of n. Thus for n = 12 it is pu(1) + p(2) + p(3) + w(4) + p(6) + w(12).
(iii) Prove that if p is prime and k > 1, then f(p*) = 0. Deduce that f(1) = 1 but
f(n) = 0 whenever n > 1.

(iv) Prove that g(n) = Z p(m) is multiplicative. Deduce that
m

m|n
oo T0(- )

where the product is over the distinct prime factors of n.
(v) Prove that ¢(n) = ng(n).

3.2 Linear congruences

Just as linear equations are the easiest to solve, so one might expect that linear congru-
ences

ax =b (mod m)

are the easiest to solve. In fact we have already solved this in principle since it is equivalent
to the linear diophantine equation

ar +my = b.
Theorem 3.10. The congruence
ar =b (mod m)
is soluble if and only if (a,m)|b, and then the general solution is given by the members

of a residue class xo modulo m/(a,m). The residue class xo can be found by applying
Fuclid’s algorithm to solve axg + myy = b.
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Proof. The congruence is equivalent to the equation ax + my = b and there can be no
solution if (a,m) {b. We know from Euclid’s algorithm that if (a,m)[b, then

a - m b
(a,m) (a,m)y ~ (a,m)

is soluble. Let zg, yo be such a solution. Obviously every member of the residue class z
modulo m/(a, m) gives a solution. Let x, y be another solution. Then

a
— = d
(a7 =0 el )
and since
a o m \_,
(a,m)” (a,m))
it follows that x is in the residue class g modulo m/(a, m). O

A curious, but sometimes useful, application which uses somewhat similar ideas is the
following

Theorem 3.11 (Wilson). Let p be a prime number, then (p — 1) = —1 (mod p).

Proof. The casesp=2and p=3are (2—1)l=1=—1 (mod 2) and (3—-1)! =2=—1
(mod 3). Thus we may suppose that p > 5. Then 22 = 1 (mod p) implies z = +1
(mod p). Hence the numbers 2,3, ..., p — 2 can be paired off into ]"%3 mutually exclusive
pairs a, b such that ab=1 (mod p). Thus (p —1)!=p—1= -1 (mod p). O

This theorem actually gives a necessary and sufficient condition for p to be a prime,
since if p were to be composite, then we would have ((p — 1)!,p) > 1. However this is
useless since (p — 1)! grows very rapidly.

What about simultaneous linear congruences?

ar =b (mod q1),

(3.1)

a,x =b, (mod g,).

There can only be a solution when each individual equation is soluble, so we require
(a;,q;)|b; for every j. Then we know that each individual equation is soluble for all the
members of some residue class ¢; modulo ¢;/(a;,g;). Thus the above system reduces to
a collection of simultaneous congruences

r =c (mod my),
(3.2)

r =c¢ (modm,)
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for some values of ¢; and m;. Now suppose that for some ¢ and j # ¢ we have (m;, m;) =
d > 1. Then x has to satisfy ¢; = = ¢; (mod d). This imposes further conditions on ¢;
which can get very complicated. To avoid this one can make the following observations.

Suppose that py,...,ps are all the prime factors of m; ...m,. Then for each j we have
m; = qulj .. :l;sj

where the u;; are non-negative integers. Now
r =c¢; (mod my)

if and only if

r  =c¢; (mod pY),

r  =c¢; (mod ps”),
so we can reduce to the case when all the moduli are prime powers. If a prime divides
more than one mj, so there are 7, j, k so that u;; > 0 and u;; > 0, then we can certainly
suppose, if necessary by switching indices, that 0 < w;; < u;,. Moreover there will be no
solution unless

c; = ¢, (mod p;”),
and in the latter case every solution of

r = ¢ (mod p;™*)

will also be a solution of
z=c¢; (mod p;¥).

Thus we either have no solution or we can reduce to a system in which each modulus is a
power of a different prime. Thus it suffices to study the system (m;, m;) = 1 when i # j.
Moreover every system can, with some work, be reduced to this case.

Theorem 3.12 (Chinese Remainder Theorem). Suppose that (m;,m;) = 1 for every
t # 7. Then the system has as its complete solution precisely the members of a
unique residue class modulo mims ... m,.

Proof. We first show that there is a solution. Let M = mymsy...m, and M; = M/m;,
so that (M;,m;) = 1. We know that there is an N; so that M;N; = ¢; (mod m;) (solve
yM; = c¢; (mod m;) in y). Let = be any member of the residue class

NiMj + -+ N. M, (mod M).
Then for every j, since m;|M; when ¢ # j we have

x = N;M; (mod mj;)

=¢; (mod m;)
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so the residue class x (mod M) gives a solution.
Now we have to show that this is unique. Suppose y is also a solution of the system.
Then for every ;7 we have

y =c¢; (mod m;)

=2z (mod m;)

and so m;ly — x. Since the m; are pairwise co-prime we have M|y — =z, so y is in the
residue class  modulo M. [

Example 3.6. Consider the system of congruences

x =3 (mod 4),
=5 (mod 21),
=17 (mod 25).

We have my = 4, mgy = 21, mg = 25, M = 2100, M; = 525, My = 100, M35 = 84. First
we have to solve

525N; = 3 (mod 4),
100Ny =5 (mod 21),
84N; =7 (mod 25).

Reducing the constants gives

Ny =3 (mod 4),
(=5)Ny =5 (mod 21),
9N3 =7 (mod 25).

Thus we can take Ny = 3, Ny = 20, 7 = —18 (mod 25) so N3 = —2 = 23 (mod 25).
Then the complete solution is given by

x = N1 My + NoMs + N3 Mz
=3 x 525+ 20 x 100 + 23 x 84
= 5507
= 1307 (mod 2100).

3.2.1 Exercises

1. Solve where possible.
(i) 91z = 84 (mod 143)
(ii) 912 = 84 (mod 147)
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2. Solve 11z =21 (mod 105).

3. Solve the simultaneous congruences

r =4 (mod 19)
=5 (mod 31)

4. Solve the simultaneous congruences

=6 (mod 17)
=7 (mod 23)

5. Solve the simultaneous congruences

x =3 (mod 6)

x =5 (mod 35)

r =7 (mod 143)
x =11 (mod 323)

6. Eggs in basket problem (Brahmagupta 7th century A.D.). Find the smallest number
of eggs such that when eggs are removed 2, 3, 4, 5 or 6 at a time 1 remains, but when
eggs are removed 7 at a time none remain.

7. Show that every integer satisfies at least one of the following congruences; x = 0
(mod 2), z =0 (mod 3), x =1 (mod 4), z =1 (mod 6), x = 11 (mod 12). Such a
collection of congruences (with the moduli all different) is known as a covering class. Paul
Erdos asked whether there are covering classes with all the moduli arbitrarily large. For
a long time it was an open question. Eventually Bob Hough showed that there are none.

3.3 General Polynomial Congruences

The solution of a general polynomial congruence can be quite tricky, even for a polynomial
with a single variable

f(x) i==ap+ax+ - +a;x' +---ay2’ =0 (mod m) (3.3)

where the a; are integers. The largest k such that a;, # 0 (mod m) is the degree of f
modulo m. If a; =0 (mod m) for every j, then the degree of f modulo m is not defined,
and so does not exist.
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We have already seen that
7> =1 (mod 8)

is solved by any odd z, so that it has four solutions modulo 8, x =1, 3, 5, 7 (mod 8).
That is, more than the degree 2. However, when the modulus is prime we have the more
familiar conclusion.

When we have a solution x to a polynomial congruence such as we may sometimes
refer to such values as a root of the polynomial modulo m.

Theorem 3.13 (Lagrange). Suppose that p is prime, and f(z) = ap+a1x+- - -+a;ai+- -
is a polynomial with integer coefficients a; and it has degree k modulo p. Then the number
of incongruent solutions of

f(z) =0 (mod p)

1s at most k.

Proof. The case of degree 0 is obvious. Thus we can suppose k& > 1. We use induction
on the degree k. If a polynomial f has degree 1 modulo p, so that f(z) = ag + a1z with
p 1 aq, then the congruence becomes

a1x = —ay (mod p)

and since a; Z 0 (mod p) (because f has degree 1) we know that this is soluble by
precisely the members of a unique residue class modulo p.

Now suppose that the conclusion holds for all polynomials of a given degree k and
suppose that f has degree k + 1. If

f(z) =0 (mod p)

has no solutions, then we are done. Hence we may suppose it has (at least) one, say
r =1z (mod p). By the division algorithm for polynomials we have

f(@) = (z — zo)a(x) + f(w0)

where ¢(z) is a polynomial of degree k with integer coefficients. [To see this observe first
that 2/ — 2} = (z — o) (27~ 4+ 2722 + ---2)7") and so collecting together the terms
we get f(x) — f(zo) = (x — zo)g(z). Moreover the leading coefficient of ¢(x) is ax # 0

(
(mod p)]. But f(zo) =0 (mod p), so that

f(x) = (x = wo)q(x) (mod p)

If f(z1) =0 (mod p), with x; #Z 2o (mod p), then p 1 x1 — x¢ so that p|g(z;). [Note that
if the modulus is not prime we cannot make this deduction; mj;ms|ab could hold because
mi1|a and ma|b]. By the inductive hypothesis there are at most k possibilities for z1, so
at most k + 1 in all. O
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It is useful at this stage to consider generally the number of solutions of a polynomial
congruence.

Definition 3.9. Suppose that f is a polynomial with integer coefficients. Given a modulus
m € N, we define the N¢(m) to be the number of different residue classes x modulo m
such that f(x) =0 (mod m).

For example when f(z) = 2> — 1 we have N;(8) = 4, and for an odd prime p,
N¢(p) = 2, but Ny(2) = 1. If g(z) = 2® + 5, then Ny(2) = 1, Ny(3) = 2, Ny(5) = 1,
Ny(7) = 2, Ny(11) = 0, N,(21) = 4. Is there a general formula here? The answer is
yes, but we don’t yet have the tools to decide this. To get the last example you could
compute all 21 values modulo 21, but it is easier to use the following.

Theorem 3.14. Suppose that f is a polynomial with integer coefficients. Then N¢(m)
1s a multiplicative function of m.

Note that in the first case above N(8) # N;(2)3.

Proof. Suppose that (my, ms) = 1. Choose n; so that noms =1 (mod m;) and nym; =1
(mod my). Suppose that 1, xo are such that f(z;) =0 (mod m;). Let

T = xnems + xonymy (mod mims).

Then
x = xngmy = x1 (mod my)

and
f(x) = f(x1) =0 (mod my).

Likewise f(z) = 0 (mod my). Hence f(z) = 0 (mod mymsy). Moreover the x are dis-
tinct modulo mymsy. Thus we have constructed Ny(mq)Ny(mg) solutions to the latter
congruence, so that Ny(mq)Ny(mg) < Ng(mims).

On the other hand, if we have f(z) = 0 (mod m;ms), then we can choose z, x5
uniquely modulo m; and mg respectively so that z1noms = & (mod mq) and zonymy = x
(mod my), and then z = x1nems + xonymy (mod mymsy). Hence

f(z1) = f(xingmg + xanymy) =0 (mod my)
and likewise f(x2) =0 (mod my). Thus Ny(mimse) < Ny(mq)ns(ms). O

In view of the multiplicative of the structure of the roots of a polynomial congruence
it suffices to concentrate on the case when m is a prime power. It turns out that the
really hard case is when the modulus is prime. If we can deal with that, then the case
of higher powers of primes becomes more amenable. Incredibly we can imitate Newton’s
method from calculus. This gives a possible method of lifting from solutions modulo p to
solutions modulo higher powers of p. Note that if we have a solution to

f(z) =0 (mod p'*h), (3.4)
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then it must also be a solution to
f(x) =0 (mod p"). (3.5)

Theorem 3.15 (Hensel’s Lemma). Suppose that f is a polynomial with integer coeffi-
cients and there is an xy such that f(x1) =0 (mod p'). There are three cases.

(i) If p|f'(x1) but p™t ¢ f(x1), then there is mo solution = to with x = x1
(mod p).

(1) If p|f'(z1) and p**t|f(zy1), then there are p solutions xo to with o = 11
(mod p'), given by taking all possible such x.

(i5i) If pt f'(z1), then there is a unique solution xy to with xy = x7 (mod p')
given by

zy = +p'j (mod p™h),  jf'(z1) = —f(z)p™" (mod p).

Proof. We use the Taylor expansion of f about x;. We have

flar+h) = f(z1) +hf’(:v1)+h2M+...+hjm

Since f is a polynomial there are only a finite number of terms and each of the coefficients
% is an integer. Now put h = p'j where j is at our disposal. All the terms except

the first two are divisible by p* and 2t >t 4+ 1. Thus

flar+p'5) = flzr) +p'f'(z1) (mod p™*h).

The first case is clear; when p|f’(z1) but p** { f(x1), then there can be no solution. Also
in the second case, p|f’(x1) and p'™! then there is a solution for every choice of j, so for
every xo modulo p'™! with 25 = z; (mod p'). Finally in the third case there is exactly
one solution j modulo p so that

if'(z1) = = flz1)p™" (mod p)

and so there is a unique z3 = z1 + p'j (mod p'™) with f(z3) =0 (mod p'*).
If we think of this as saying

: f(z1)
r Pt =" -
/()
then we can see this exactly imitates Newton’s method for finding roots. [

Example 3.7. Find all roots of x> —2 =10 (mod 7") with 1 <r < 3.

(1) It is easy to see that 3 and 4 are solutions modulo 7.

(ii) If we take x, = 3, as f(z) = 2> =2, f'(x) =2z, f3) =7, f/(3) =6 £ 0 (mod 7),
it follows that 3 lifts to a unique solution modulo 7>. Moreover 65 = jf'(3) = —f(3)/7 =
—1 (mod 7), j=1,2,+7j=3+7=10, so o =10 (mod 7%).
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(iii) Similarly f(10) =98 =2 x 72, f/(10) =20 £ 0 (mod 7), so 10 lifts to a unique
solution modulo 73. Then 205 = j f'(10) = —f(10)/(7%*) = —2 (mod 7), j =2 (mod 7),
73 =10+ 2 x 72 = 108. f(108) = 11662 = 0 (mod 7).

(iv) Now consider x1 = 4. Then f(4) = 14, f'(4) = 8 £ 0 (mod 7), so 4 lifts to
a unique solution. 8j = jf'(4) = —f(4)/7 = =2 (mod 7), j =5, g = 1 +7j = 39
(mod 72), f(39) =0 (mod 7?).

(v) Now we have x5 = 39, f(39) = 1519, f'(39) =78 =1 (mod 7), j = jf'(39) =
—£(39)/(7?) = =31 =4 (mod 7). 3 = 75 + 72j = 39+ 196 = 235 (mod 73). f(235) =
55223 = 161 x 73.

Example 3.8. Find all solutions of x* —2 (mod 3"). By trial, the only solution modulo
3isxy =2. f(x) =232, f'(x) = 322 Thus f'(2) =0 (mod 3) and f(2) = 6. But
321 f(2) so we are in case (i) so there is no solution modulo 3* and hence none modulo
3" with r > 2.

3.3.1 Exercises
1. Let p denote a prime number and define

p—1

p—2
f@) == =a"+ ) au.
1=1 =0
(i) Show that if i = 1, 2, ..., p — 2, then pla;.
(ii) Suppose that p > 3. When (a,p) = 1, a* denotes a solution of ax =1 (mod p?).
Show that 1* +2* + -+ (p — 1)* =0 (mod p?) (Wolstenholme’s congruence).
2. Show that 61! +1=63!+1=0 (mod 71).

3. Prove that 3n? — 1 can never be a perfect square.

4. (i) Prove that if x € Z, then 2 =0 or 1 (mod 4).
(ii) Prove that 5y* + 2 = z* has no solutions with y, z € Z.

5. (i) Prove that if z € Z, then 23 = 0 or =1 (mod 7).
(ii) Prove that y® — 2® = 3 has no solutions with y, z € Z.

6. Let f(z) denote a polynomial of degree at least 1 with integer coefficients and positive
leading coefficient.
(i) Show that if f(xg) = m > 0, then f(x) =0 (mod m) whenever x = zy (mod m).
(ii) Show that there are infinitely many x € N such that f(z) is not prime.

7. (i) Suppose that p is an odd prime and z is an integer with p|2? + 1. Prove that x has
order 4 and p =1 (mod 4).
(ii) Prove that there are infinitely many primes p =1 (mod 4).

8. Find all solutions (if there are any) to each of the following congruences
(i) 22 = =1 (mod 7), (ii) > = —1 (mod 13), (iii) 2° + 4z =0 (mod 5). 9. (i) Let



50 CHAPTER 3. CONGRUENCES AND RESIDUE CLASSES

m € N. Prove that
(=D Hy" Pty ) =y - L
(ii) Let n € N. Prove that
(xQ + 1)(x2 — 1)(x4”_4 +am et 1) = 4 — 1.

(iii) Let p be a prime number with p =1 (mod 4). Prove that > = —1 (mod p) has
exactly two solutions.

10. Let n € Z. Prove that if pn* + n + 1 and p > 3, then p =1 (mod 6). Deduce that
there are infinitely many primes p =1 (mod 6).

11. Suppose that p is a prime number and ¢|p — 1. Prove that the congruence 1 + x +
-+ 271 =0 (mod p) has exactly ¢ — 1 solutions.

3.4 Notes

§1 The concept of residue classes and the idea that the residue classes modulo n partition
the integers was introduced by Euler about 1750. The notation = was introduced by
Gauss in 1801. For a modern translation see C. F. Gauss, Disquisitiones Arithmeticee,
Yale University Press, 1965. Euler introduced the eponymous function in 1763.

W. R. Alford, A. Granville & C. Pomerance proved that “There are Infinitely Many
Carmichael Numbers”, Annals of Mathematics. 140(1994), 703-722.

The first complete solution of the Chinese Remainder Theorem in the general case
occurs in the treatise of Ch’in Chiu-shao of 1247.

Wilson’s thereom was first stated by Ibn al-Haytham about 1000AD. The first proof
was given by Lagrange in 1771. Hensel proved his lemma in 1897. The proof in the
non-singular case is motivated by Newton’s method in numerical analysis.



Chapter 4

Primitive Roots and RSA

4.1 Primitive Roots

We have seen that on the residue classes modulo m we can perform many of the standard
operations of arithmetic. Such an object is called a ring. In this case it is usually denoted
by Z/mZ or Z,,. In this chapter we will look at its multiplicative structure. In particular
we will consider the reduced residue classes modulo m. An obvious question is what
happens if we take powers of a fixed residue a?

Definition 4.1. Given m € N, a € Z, (a,m) = 1 we define the order ord,,(a) of a
modulo m to be the smallest positive integer t such that

a'=1 (mod m).
We may express this by saying that a belongs to the exponent t modulo m.
Note that by Euler’s theorem, a®™ =1 (mod m), so that ord,,(a) exists.

Theorem 4.1. Suppose that m € N, (a,m) =1 andn € N is such that a” =1 (mod m).
Then ord,,(a)|n. In particular ord,,(a)|o(m).

Proof. For concision let ¢t = ord,,(a). Since t is minimal we have ¢ < n. Thus by the
division algorithm there are ¢ and r with 0 < r < t such that n = tq + r. Hence

a" = (" =a™" =a" =1 (mod m).

But 0 < r < t. If we would have » > 0, then we would contradict the minimality of ¢.
Hence r = 0. UJ

Here is an application we will make use of later.

Theorem 4.2. Suppose that d|p — 1. Then the congruence z® = 1 (mod p) has ezactly
d solutions.

51
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Proof. We have
Pt 1= (2 = (P P 2t ).

To see this just multiply out the right hand side and observe that the terms telescope.
We know from Euler’s theorem that there are exactly p — 1 incongruent roots to the
left hand side modulo p. On the other hand, by Lagrange’s theorem, Theorem [3.13] the
second factor has at most p — 1 — d such roots, so the first factor must account for at
least d. On the other hand, again by Lagrange’s theorem, it has at most d. O

We have already seen that, when (a,m) = 1, a has order modulo m which divides
¢(m). One question one can ask is, given any d|¢(m), are there elements of order d?
In the special case d = ¢(m) this would mean that a,a?,...,a?"™ are distinct modulo
m, because otherwise we would have ¢ = a¥ (mod m) with 1 < u < v < ¢(m) and
then a""* = 1 (mod m) and 1 < v —u < ¢(m) contradicting the assumption that

ordy,(a) = ¢(m).

Example 4.1. m = 7.

a=1,ord;(1) = 1.

a=222=4,2=8=1. ords(2) = 3.

a=3,32=9=2,3=27=6,3"=18=4,
3 =12=5, 3°=1, ord;(3) = 6.

a=4,4>=2,43=20=1, ord,;(4) = 3.

a=>5,52=2=4,5=20=6, 5* =30 = 2,
5 =10=3, 5= 1, ord;(5) = 6.

a=6,62=36=1, ord;(6) = 2.

Thus there is one element of order 1, one element of order 2, two of order 3 and two of

order 6.

Is it a fluke that for each d|6 = ¢(7) the number of elements of order d is ¢(d)?

Definition 4.2. Suppose that m € N and (a,m) = 1. If ord,,(a) = ¢(m) then we say
that a 1s a primitive root modulo m.

We know that we do not always have primitive roots. For example, any number a
with (a,8) = 1is odd and so > =1 mod 8, whereas ¢(8) = 4. There are primitive roots
to some moduli. For example, modulo 7 the powers of 3 are successively 3,2,6,4,5, 1.

Gauss determined precisely which moduli possess primitive roots. The first step is
the case of prime modulus.

Theorem 4.3 (Gauss). Suppose that p is a prime number. Let d|p—1 then there are ¢(d)
residue classes a with ord,(a) = d. In particular there are ¢p(p — 1) = ¢(¢(p)) primitive
roots modulo p.



4.1. PRIMITIVE ROOTS 33

Proof. We have already seen that the order of every reduced residue class modulo p
divides p— 1. For a given d|p — 1 let ¢(d) denote the number of reduced residues of order
d modulo p. We know that the congruence ¢ =1 (mod p) has exactly d solutions. Thus
every solution has order dividing d. Moreover every reduced residue which has order
dividing d must be a solution. Thus for each d|p — 1 we have

> W(r) =d.

r|d

This is reminiscent of an earlier formula

> o(r) =d.

r|d

Let 1 = dy < dy < ... < dp = p—1 be the divisors of p — 1 in order. We have a

relationship
> ow(r) =4
r|d;

for each 7 = 1,2, ... and, of course, the sum is over a subset of the divisors of p—1. I claim
that this determines ¢ (d;) uniquely. We could prove this by observing that if N is the
number of positive divisors of p — 1, then we have N linear equations in the N unknowns
Y (r) and we can we can write this in matrix notation YU = d. Moreover U is an upper
triangular matrix with non-zero entries on the diagonal and so is invertible. Hence the
Y(d;) are uniquely determined. But we already know a solution, namely ¢ = ¢. If we
wish to avoid the linear algebra we can prove this by induction on j. For the base case
we have (1) = 1. Suppose that 1(d;),...,1(d;) are determined. Then we have

Z Y(r) = dj.

rldj+1
Hence
U(dj41) = djy1 — Z P(r)
rldj41
T<dj+1

and every term on the right hand side is already determined. Thus we can conclude
there is only one solution to our system of equations. But we already know one solution,

namely (r) = ¢(r). O

Example 4.2. Here is the proof when p = 13, so we are concerned with the divisors of
12.

(¥(1),%(2),%(3),%(4),9(6),(12)) =(1,2,3,4,6,12)

e e R R R e e
OO OO =
S OO = O
OO = O ==
SO = O = = =
— = = = =
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How about higher powers of odd primes? We can use the idea of “lifting” which we
already saw in connection with solutions of congruences.

Theorem 4.4 (Gauss). Suppose that p is an odd prime and d|¢(p*) = p*1(p—1). Then
there are ¢(d) residue classes modulo p* which have order d.

Proof. We first prove the existence of a primitive root modulo p* when k& > 1. Let g be
a primitive root modulo p. It is clear that a primitive root modulo p* will also be one
modulo p, so it makes sense to examine g + jp. We show that there is a j so that

(g+jp)P ' =1+ hip

with pt hy. Observe that g?~! = 1 + Ip for some [. Then, by the binomial expansion, for
every j

(g+7p) " = g*t+ (p— 1)g" %p (mod p?)
=1+ (1—g¢"?j)p (mod p°)

and we may choose j so that p {1l — gP—2j.
Now we show that with this j, for every ¢ there is an h; such that

(g+jp)? "D =14 npt (pth). (4.1)

We do this by induction on t. We have already established the base case. Suppose we
have already established the result for some t. Then

(g + 3p)P =Y = (1 + hyp')?

— 1+htpt+1 p(p — 5 )hQ ot (mod p3t)'

We have both 2¢ +1 >t + 2 and 3t > ¢t + 2. Hence we have
(g+gp)P" P~V =1+ hp't' (mod p*?)

and since p t h; this gives the desired conclusion.

Now consider the number g+ jp. We show that this is a primitive root modulo p*, and
we may suppose that k > 2. Let d = ord,«(g + jp). Then d|¢(p*) = p*~(p — 1). Hence
d = p'v for some t and v with 0 <t <k—1and vlp—1. We have p' = (p—1+ 1) =
(mod p — 1). Hence

= (g+jp)? = (g+jp)""" (mod p¥)
(9+ Jp) (mod p)
g" (mod p)
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and since ¢ is a primitive root modulo p we have v = p — 1. Now repeating the argument
we have

1= (g+jp)* (mod p)
= (g + )" "V (mod p*)
=14 hypp'™t

by (4.1)). Since pt hyyq this can only be =1 (mod pF) if t = k — 1.
Now suppose that d|¢(p*) and g is a primitive root modulo p* and consider the ¢(d)
residue classes

k
gb¢>(p )/d7

modulo p* with (b,d) =1 and 1 < b < d. Since
d
(gbqﬁ(p’“)/d) =1 (mod p*)

they have order r dividing d. Moreover g would have order

(bp(p")r/d, ¢(p*)) = (br, d)p(p")/d = ¢(p")r/d,
and so r = d. ]

It is easy to see that 1 is a primitive root modulo 2 and 3 is a primitive root modulo 4,
and we have already seen that there are no primitive roots modulo 8, and hence there are
none modulo higher powers of 2. Thus we are half-way to proving the following theorem.

Theorem 4.5 (Gauss). We have primitive roots modulo m when m =2, m = 4, m = p*
and m = 2p* with p an odd prime and in no other cases.

Proof. The one positive case left to settle is m = 2pF. We have ¢(2p*) = ¢(p*). Let g be
a primitive root modulo p* and let G = g if g is odd and G = g + p* if g is even. Then G
is odd and a primitive root modulo p*. Hence, given z with 1 < 2 < 2p* and (z,2p*) =1
there is a y so that GY = x (mod p*) and (regardless of the value of y) GY = x (mod 2).
Hence GY = 2 (mod 2p*).

It remains to show that for all other m there are no residue classes of order ¢(m). We
have already dealt with m = 2% with £ > 3. Write m = Qkp’fl ...pF. We can suppose
that (i) k=0or 1 and r > 2 or (ii) ¥ > 2 and r > 1. The key to the proof is that given a
with (a,m) = 1 the orders of @ modulo 2%, p?j divides ¢(2*) and gb(p?j ) respectively. Thus
the order of a modulo m divides the least common multiple of ¢(2%), p(p™), ... ¢(pkr).
That is

Ordm(a>|[2k_17pll€lil<pl - ]-)7 s 7pr_1<p'r - 1)]
and this LCM is strictly smaller than ¢(m) because 2 divides at least two terms. Thus
in case (i) [py' (o1 — 1), 057 (p2 = 1)) = o052 pr = 1,pe — 1] < 36(pi'p5?). Likewise
in case (ii) we have [2°71 pit ™ (pr = 1)) = 2725 2, p1 — 1] = 2 (- 1) <
B(25p1"). O
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Example 4.3. Primitive roots modulo 7 and 7>.

(i) Modulo 7. Try 2. Divisors of (7) =6 are 1,2,3,6 and the order of 2 must be one
of these. 2! =2# 1,22 =4#1, 22 =8 =1 s0 2 not a primitive root.

Try3. 3'=3#1,32=9=2#1,3*=27=6# 1. Hence 3 has order 6 and so is
a primitive root modulo 7. One can now find all primitive roots modulo 7 by considering
3% with 1 < z < 6 and (x,6) = 1. The only choices for x are 1 and 5, so the only
other primitive root modulo 7 i1s 3° = 243 =5 (mod 7). Thus 3,5 are the primitive roots
modulo 7.

By the way, this trial and error method is the best general method that we have. It is
believed that in general one does not have to search very far, but we cannot prove it.

(ii) Modulo 7*. We know that a primitive root modulo 7* has to be one modulo 7,
so we can start with 3. The divisors of ¢(7?) = 6.7 are 1,2,3,6,7,14,21,42. We know
that 3* # 1 (mod 7) when x = 1,2,3 and so 3* # 1 (mod 7?) in those cases. Also since
3"=3 (mod 7), 3" =32=2 (mod 7) and 3* =33 =6 (mod 7) so 3° # 1 (mod 7?)
in those cases either. Thus we only need check 3% = 729 = 43 # 1 (mod 7%). Thus 3 is
also a primitive root modulo T2.

We know from the Chinese Remainder Theorem that we can reduce a polynomial
congruence modulo m when m is composite to its prime power constituents. However we
were not able to treat the case m = 2* in general because when k > 3 primitive roots do
not exist. Nevertheless we can usually apply the following theorem.

Theorem 4.6 (Gauss). Suppose that k > 3. Then the numbers (—1)"5" with u = 0,1
and 0 < v < 2872 form a set of reduced residues modulo 2"

Proof. We first prove that if r > 3, then
5277 = 1427, (4.2)

with 2 1 j,. We prove this by induction on r. It is clear when r = 3, since 5? = 25 =

1+ 23.3. If (4.2) holds, then
521'—1 — 1 + 2T+1jr + 227‘jr2

and 21 j, + 277152, We also know that ordqx(5)[¢(2F) = 2871 so ordy (5) = 2" for some
0 <r <k — 1. The relationship (4.2)) shows that r = k — 2. Hence the numbers

1,5,52,53 ... 521
are distinct modulo 2%, Likewise the numbers
—1,-5,—5% -5 .. —5¥1

are distinct modulo 2%, Moreover the numbers in the fist list are = 1 (mod 4) and those
in the second one are = —1 (mod 4). Thus the members of the first list are all different
modulo 2* to those in the second. Thus the two lists together give a complete cover of
the 251 reduced residues modulo 2*. [
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In terms of group theory this says that the reduced residues modulo 2% with k > 3,

under multiplication form a direct product of a cyclic group of order 2 and one of order
2k=2,

4.1.1 Exercises

1. Find all the primitive roots of 7, 14, 49.
2. First find a primitive root modulo 19 and then find all primitive roots modulo 19.

3. Prove that 1¥ + 2% + ... + (p — 1)* =0 (mod p) when p — 11k and is = —1 (mod p)
when p — 1|k.

4. Let g be a primitive root modulo p. Prove that no k exists satisfying g2 = ¢"*1 +1 =
" +2 (mod p).

5. Suppose that p = 2™+ 1 is a prime, p { a and a is a quadratic non-residue (i.e., °> = a

(mod p) is insoluble) modulo p. Show that a is a primitive root modulo p.

6. [Gauss| Prove that for any prime number p # 3 the product of its primitive roots is 1
(mod p).

7. The Carmichael function A(m) is the smallest positive number such that ord,(m)|\(m)
whenever (a,m) = 1. Prove that A(n)|o(n).

8. Prove that if @ has order 3 modulo a prime p, then 1 +a+a?> =0 (mod p), and 1 +a
has order 6.

9. Suppose that (10a,q) = 1, and that k is the order of 10 modulo ¢q. Show that the
decimal expansion of the rational number a/q is periodic with least period k.

4.2 Binomial Congruences and Discrete Logarithms

As an application of this theory we can say something about the solution of congruences
of the form

¥ =a (mod p)

when p is odd. The case a = 0 is easy. The only solution is x = 0 (mod p). Suppose
a %0 (mod p). Then we can pick a primitive root g modulo p and then there will be a
¢ so that ¢¢ = a (mod p). Also, since any solution x will have p { x we can define y so
that ¢ =2 (mod p). Thus our congruence becomes

ky c

9" =g° (mod p).

Hence it follows that
ky=c (mod p—1).

We have turned a polynomial congruence into a linear one. This is a bit like using logar-
ithms on real numbers. Sometimes the exponents ¢ and y are referred to as the discrete
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logarithms modulo p to the base g. Computing them numerically is hard and there is a
protocol (Diffie-Hellman) which uses them to exchange secure keys and passwords. Our
new congruence is soluble if and only if (k,p — 1)|¢, and when this holds the y which
satisfy it lie in a residue class modulo %, i.e. (k,p—1) different residue classes mod-
ulo p — 1. Thus, when a Z 0 (mod p) the original congruence is either insoluble or has
(k,p — 1) solutions. Thus we just proved the following theorem.

Theorem 4.7. Suppose p is an odd prime. When p 1 a the congruence x* = a (mod p)

has 0 or (k,p — 1) solutions, and the number of reduced residues a modulo p for which it

15 soluble is %.

The above theorem suggests that we can use primitive roots to create the residue class
equivalent of logarithms.

Definition 4.3. Given a primitive root g and a reduced residue class a modulo m we
define the discrete logarithm dlog,(a), or inder indy(a) to be that unique residue class
modulo ¢(m) such that ¢¢ = a (mod m)

The notation ind,y(x) is more commonly used, but dlog,(z) seems more natural.

Example 4.4. Find a primitive root modulo 11 and construct a table of discrete logar-
ithms. First we check 2. The divisors of 11 —1 = 10 are 1, 2, 5, 10 and 2' = 2 £ 1
(mod 11), 22 =4 # 1 (mod 11), 2> =32 =10 # 1 (mod 11), so 2 is a primitive oot
modulo 11.

Now we construct a table of powers of 2 modulo 11

y 1 2 3 4 5 6 7 8 9 10
r=2Y 2 4 8 5 10 9 7 3 6 1

Then we construct the “inverse” table

r 1 2
y =dlogy(z) 10 1

10
5

345 6 7 8 9
8 2 4 9 7 3 6

Note that while x is a residue modulo p (here p = 11), the y are residues modulo p — 1
(here 10). The number y is the order, or exponent, to which 2 has to be raised to give x
modulo p. In other words z = g¥°%(*) (mod p).

Example 4.5. We can use this to solve, if possible, the congruences,

6 (mod 11),
9 (mod 11),
10 (mod 11)

1173
135
$65

Consider the first one, 23 = 6 (mod 11). We can write x = 2¥ (mod 11), so that
x3 = 2% and we see from the second table that 6 = 2° (mod 11). Thus what we need is

).
that 3y and 9 match. This means that we need 3y =9 (mod 10).



4.3. RSA 59

Recall that the modulus here is p — 1 = 10 since 2! = 1 (mod 11). This has the

unique solution
y =3 (mod 10).

Going to the first table we find that x =8 (mod 11).

For the second congruence we find that 5y = 6 (mod 10) and now we see that this
has no solutions because (5,10) =51 6.

In the third case we have 65y =5 (mod 10) and this is equivalent to 13y = 1 (mod 2)
and this has one solution modulo y =1 (mod 2), and so 5 solutions modulo 10 given by
y=1,3,5,7 or9 modulo 10. Hence the original congruence has five solutions given by

r=2,8,10,7,6 (mod 11)

4.2.1 Exercises

1. Show that 3 is a primitive root modulo 17 and draw up a table of discrete logarithms to
this base modulo 17. Hence, or otherwise, find all solutions to the following congruences.
(i) ' =16 (mod 17),
(i) 2% =9 (mod 17),
(iii) z%° = 13 (mod 17),
(iv) 21 =9 (mod 17).
2. (i) Find the orders of 2, 3 and 5 modulo 23.
(ii) Find a primitive root modulo 23, construct a table of discrete logarithms, and
solve the congruence 2% =4 (mod 23).

3. Show that 2 is a primitive root modulo 13 and draw up a table of discrete logarithms
to this base. Hence, or otherwise, find all solutions to the following congruences.
(i) ' =3 (mod 13),
(i) 22 = 3 (mod 13),
(iii) 23 = 7 (mod 13).
4. Show that 2 is a primitive root modulo 11 and draw up a table of discrete logarithms to
this base modulo 11. Hence, or otherwise, find all solutions to the following congruences.
(i) 2 =7 (mod 11),
(i) z** =9 (mod 11),
(iii) 2" = 8 (mod 11).

4.3 RSA

Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been de-
scribed internally at GCHQ by Cocks in 1973 and then shared with NSA. This is some-
times described as a way of sharing information by public key encryption. The principle
of the method is as follows. Let n,d, e € N be such that

de =1 (mod ¢(n)).
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Given a message M encoded as a number, and suppose M < n. Compute
E = M°¢ (mod n)
and transmit F. The recipient then computes
E? (mod n).

Then
E'= (M= M%* =M (mod n)

since ¢(n)|de — 1 and the recipient recovers the message. The sender has to know only
n and e. The recipient only has to know n and d. The level of security depends only on
the ease with which one can find d knowing n and e. The numbers n and e can be in the
public domain.

The crucial question is the solubility of

de =1 (mod ¢(n))
and this in turn requires the value of ¢(n). Suppose that n is the product of two primes
n = pq.

If n can be factored then we have ¢(n) = (p—1)(¢—1). But this is a known hard problem,
especially when the primes are roughly of the same size.

Of course if the value of ¢(n) can be discovered not only is the message easily broken
but n is easily factored since one has

prqg=pg+1—9n)=n+1-9¢(n),

pg=n

and once can substitute for ¢ and then solve the quadratic equation in p. In other words,
knowing ¢(n) is equivalent to factoring n.

4.3.1 Exercises

1. Given that n is a product of two primes p and ¢ with p < ¢, prove that

1 0(n) — it L g(m)? —dn
p= 5 .

If you have a good calculator use this to factorise n where n = 19749361535894833 and
¢(n) = 19749361232517120.
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4.4 Notes

$1. The function ord,,(a) has its roots in work of Lagrange. Carmichael introduced his
function in R. D. Carmichael (1910), “Note on a new number theory function”. Bulletin
of the American Mathematical Society. 16 (5), 232-238.

Euler invented the term primitive root, and Gauss (1801) was the first to prove that
they exist modulo p for every prime p.

§2. For a description of the Diffie-Hellman key exchange see https://en.wikipedia.
org/wiki/Diffie}E2/80%93Hellman_key_exchange

$3. There is an excellent wikipedia article on RSA at https://en.wikipedia.org/
wiki/RSA_(cryptosystem)


https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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Chapter 5

Quadratic Residues

5.1 Quadratic Congruences

We can now apply the theory we have developed to study quadratic congruences, and
especially

r* = ¢ (mod m).

The structure here is especially rich and was thus subject to much work in the eighteenth
century, culminating in a famous theorem of Gauss.

From the various theories we have developed we know that the first, or base, case we
need to understand is that when the modulus is a prime p, and since the case p = 2 is
rather easy we can suppose that p > 2. Then we are interested in

r* = ¢ (mod p). (5.1)
By the way, the apparently more general congruence az? + bxr + ¢ = 0 (mod p) (with
p 1 a of course) can be reduced by “completion of the square” via 4a(az® + bx +¢) = 0
(mod p) to (2ax + b)*> = b* — 4ac (mod p) and since 2ax + b ranges over a complete set
of residues as z does this is equivalent to solving 22 = b* — 4ac (mod p). Thus it suffices
to know about the solubility of the congruence (b.1)).

We know that has at most two solutions, and that sometimes it is soluble and
sometimes not

Example 5.1. 22 =6 mod 7 has no solution (check x =0,1,2,3 (mod 7)), but
2> =5 (mod 11)

has the solutions
r=4,7 (mod 11).

If c =0 (mod p), then the only solution to (5.1) is = 0 (mod p) (note that p|z?
implies that p|z). If ¢ # 0 (mod p) and the congruence has one solution, say = = x
(mod p), then x = p — xy (mod p) gives another.

63
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The fundamental question here is can we characterise or classify those ¢ for which the
congruence (|5.1)) is soluble? Better still can we quickly determine, given ¢, whether ({5.1])
is soluble?

Definition 5.1. If ¢ # 0 (mod p), and has a solution, then we call ¢ a quadratic
residue which we abbreviate to QR. If it does not have a solution, then we call ¢ a quadratic
non-residue or QNR.

Some authors also call 0 a quadratic residue. Others leave it undefined. We will follow
the latter course. Zero does behave differently. Now we can prove the following simple,
but surprisingly useful, theorem.

Theorem 5.1. Let p be an odd prime number. The numbers

—1\?
10232 .. (2==
) ) b 7( 2

are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p.
There are exactly %(p — 1) quadratic residues modulo p and exactly %(p — 1) quadratic
non-residues.

Proof. Suppose that 1 <z <y < %(p —1). If p|y? — 2% = (y — 2)(y + ), then p|y — z or

ply+x. But 0 <y—z <y+z <2y <p—1<p. Thus the numbers 1,22 32, ..., (1”%1)2
are distinct modulo p.

Now suppose that ¢ is a quadratic residue modulo p. Then there is an x with 1 <
r < p—1such that 2 = ¢ (mod p). If z < %(p —1), then 22 is in our list and represents
c. fi(p—1) <z <p-1, then (p—2z)*> = 2> =c (mod p), (p — )? represents ¢, and
1 <p-—x < i(p—1). Moreover (p — z)? is in our list. Thus every QR is in our list
and every member of our list is distinct and a QR. Hence there are exactly %(p —1) QR.
Moreover then the remaining p — 1 — 2(p — 1) = $(p — 1) non-zero residues have to be
QNR. O]

We can use this in various ways.

Example 5.2. Find a complete set of quadratic residues r modulo 19 with 1 < r < 18.
We can solve this by first observing that 12 =1,2% = 4,32 = 9,42 = 16,5% = 25,6% =
36, 7% = 49,8% = 64,9 = 81 is a complete set of quadratic residues and then reduce them
modulo 19 to give
1,4,9,16,6,17,11,7,5

which we can rearrange as
1,4,5,6,7,9,11,16,17.

To help us understand quadratic residues we make the following definition.
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Definition 5.2. Given an odd prime number p and an integer ¢ we define the Legendre
symbol
0 ¢=0 (mod p),
c

(—) =41 ¢a @R (modp), (5.2)
P/o —1 ¢ a QNR (mod p),

The Legendre symbol is a remarkable function with lots of interesting properties.

Example 5.3. One very important property is that it has the same value if one replaces
c by c+ kp regardless of the value of k. Thus given p it is periodic in ¢ with period p.

Example 5.4. Suppose that p is an odd prime and a %0 (mod p). Then

Ep: (“m + b)L — 0. (5.3)

r=1 p

The proof of this is rather easy. The expression ax + b runs through a complete set of
residues as x does and so one of the terms is 0, half the rest are +1, and the remainder
are —1.

Example 5.5. The number of solutions of the congruence

r* = ¢ (mod p)

-G,

We already know that the number of solutions is 1 when p|c, 2 when ¢ is a QR, and 0
when ¢ is a QNR and this matches the above exactly.

18

We can use this to count the solutions of more complicated congruences.

Example 5.6. How many solutions does
2* +y* =c (mod p)

have in x and y? Denote the number by N(p;c). We can rewrite the congruence as
z+w = ¢ (mod p), and then for each solution z, w ask for the number of solutions of
2 =2z (mod p) and y*> =w (mod p). From above this is

(- GI0-(G))
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Also w = ¢ — z (mod p), thus the total number of solutions is

vr-2(+(),) (+(57).)

z=1

If we multiply this out we get

(), 2 (50,26, (57),

By the first and second sums are 0, so that

N(p; ) —p+g (%)L (C;Z>L'

It is possible also to evaluate the sum here, but we need to know a little more about the
Legendre symbol.

The Legendre symbol is a prototype for an important class of number theoretic func-
tions called Dirichlet characters. A simple example would be to take an odd prime p and a
primitive root modulo ¢ modulo p, and then for a fixed h we can define x(g*) = e27*/(p=1)
and x(n) = 0 if pjn. The Legendre symbol is the special case h = ’%1. Dirichlet used
them to prove that if (a,m) = 1, then there are infinitely many primes in the residue
class a modulo m.

We can combine the definition of the Legendre symbol with a criterion first enunciated

by Euler.

Theorem 5.2 (Euler’s Criterion). Suppose that p is an odd prime number. Then

5) - s

and the Legendre symbol, as a function of c, is totally multiplicative.

Remark 5.1. By multiplicative we mean a function f which satisfies

f(ning) = f(n1)f(ng)

whenever (nq,ny) = 1. Totally multiplicative means that the condition (ny,ny) = 1 can
be dropped.

Remark 5.2. The totally multiplicative property means that if x and y are both QR, or
both QNR, then their product is a QR, and their product can only be a QNR if one is a
QR and the other is a QNR.
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Proof. If ¢ is a quadratic residue, then there is an x # 0 (mod p) such that 2? = ¢

(mod p). Hence T =grl=1= <§> (mod p). We know that the congruence
L

p—1

¢z =1 (mod p)

has at most ;%1 solutions and so we have just shown that it has exactly that many

solutions. We also have
(5%1—1) (c%+1) — el

and we know that this has exactly p — 1 roots modulo p. In particular every QNR is a

solution, but cannot be a root of ¢’ — 1. Hence if ¢ is a QNR, then = 1= -
L

(mod p). This proves the first part of the theorem.
To prove the second part, we have to show that for any integers ¢;, co we have

(5).- GG

If 4 =0 (mod p) or ¢co = 0 (mod p), then both sides are 0, so we can suppose that

c1ce 0 (mod p). Now
Cc1C P—
(5), =

Il
%)
S

Il
Y
SHRS
N——
h
7 N
SR
N————
h

=

@)

o,

=

Thus p divides

(5),- (). )
P /L P/ \PpP L'
But this is —2,0 or 2 and so has to be 0 since p > 2 O]

We can use this to evaluate the Legendre symbol in special cases.

Example 5.7. Suppose that p is an odd prime. Then

(—1) _J1 p=1 (mod 4)
p); |-1 p=3 (mod4).
Observe that by Fuler’s criterion

(‘—1)L — (—1)' (mod p).
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Now the difference between the left and right hand sides is —2,0 or 2 and the same
argument as above gives equality.

This example has some interesting consequences.

1. Bvery odd prime divisor p of the polynomial x> + 1 satisfies p=1 (mod 4).

2. There are infinitely many primes of the form 4k + 1.

To see 1. one only has to observe that for any such prime factor —1 has to be a
quadratic residue, so its Legendre symbol is 1. To deduce 2., follow Euclid’s arqgument by
supposing there are only finitely many such, say p1,...,p,, and take x to be 2py ... p,.

A famous question, first asked by I. M. Vinogradov in 1919, concerns the size ns(p)
of the least positive QNR modulo p. One thing one can see straight away is that ns(p)
has to be prime, since it must have a prime factor which is a QNR. He conjectured that
for any fixed positive number € > 0 we should have ny(p) < C(¢)p® and then proceeded
to prove this at least when ¢ > ﬁg where e is the base of the natural logarithm! In 1959
David Burgess, in his PhD thesis (!!) reduced this to any £ > ﬁé‘ Where on earth does

the /e come from? This was one of the things that got me interested in number theory
when I was a student. Here is an easier result.

Theorem 5.3. Suppose that p is an odd prime. Then

Proof. Let k be the smallest k such that p < kns(p). Since ns(p) cannot divide p we have
p < kna(p) < p+ na(p). Thus kna(p) is a QR, and so k is a QNR. Therefore ny(p) < k
and so ny(p)? < p+ na(p) — 1. This can be rearranged as ny(p)? — na(p) < p — 1, so

(na(p) — 3)* < p— 3. The theorem follows by taking the square. root. O

The multiplicative property of the Legendre symbol tells us that it suffices to under-

( )
p [

when p is an odd prime and ¢ is prime. When ¢ is also odd, Euler found a remarkable
relationship between this Legendre symbol and

(5),

but no one in the eighteenth century was able to prove it. Gauss proved it when he was
19! The relationship enables one to imitate the Euclid algorithm and so rapidly evaluate
the Legendre symbol.
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5.1.1 Exercises

1. Find a complete set of quadratic residues » modulo 13 in the range 1 < r < 12.
2. Find a complete set of quadratic residues » modulo 17 in the range 1 < r < 16.
3. Find a complete set of quadratic residues » modulo 23 in the range 1 < r < 22.
4

. Find all solutions (if there are any) to each of the following congruences
(i) 22 = —1 (mod 7), (ii) 22 = —1 (mod 13), (iii) 2° + 42 = 0 (mod 5).

5. Suppose that p is an odd prime and g is a primitive root modulo p. Prove that ¢ is a
quadratic non-residue modulo p.

6. Prove that 7n® — 1 can never be a perfect square.

7. Prove that if p is an odd prime, then

ZZ(xy+1) o

z=1 y=1

8. (i) Recall that for every reduced residue class r modulo p there is a unique reduced
residue class s, modulo p such that 1 = rs, (mod p), and that for every reduced residue
class s modulo p there is a unique r such that s, = s (mod p). Hence prove that if p is

r=1 s=1

(ii) Prove that if p is an odd prime, then the number of residues » modulo p for which
both r and r + 1 are quadratic residues is

(i) Prove that if ¢ =0 (mod p), then

Np;0) =p+ (-1)"% (p—1).

(ii) Prove that if ¢ Z 0 (mod p), then

(45 B () 5 (5,

z=1 z= s=1
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(iii) Deduce that if ¢ # 0 (mod p), then

p—1

N(pic)=p—(=1)7.

10. Let p be an odd prime and g be a primitive root modulo p. Prove that the quadratic
residues are precisely the residue classes ¢?* with 0 < k < %(p — 1). Show that when
p > 3 the sum of the quadratic residues modulo p is the 0 residue.

11. Prove that every quadratic non-residue modulo p is a primitive root modulo p if and
only if p = 22" + 1 for some non-negative integer n.

12. Suppose that p{ a. Show that the number of solutions to az? + bx + ¢ = 0 (mod p)

is 1+ <—b2—p4“> .
L

13. Prove that Y 7_, (””) = 0 and that if p{ a, then >*_, (M) = 0.
L L

P P

14. Let S(p’a’ b, C) — \P <a12+bm+c> .
L

=1 P
(i) Show that S(p,1,b,0) = Zz;i (%)L. (Hint: For each x with 1 <z <p—1 let
y denote the unique solution to zy = 1 (mod p), so that x(z + b) = 2*(1 + by).) Deduce
that S(p,1,b,0) = p — 1 when p|b and is —1 when p 1 b.

(ii) Show that S(p,1,0,¢) = > (y—JrC>L (1 + (%)J (Hint: Note that for each y

y=1\ p
with 1 <y < p the number of solutions in x to 22 = y (mod p) is 1+ (%) ) Deduce that
L
S(p,1,0,¢) = S(p,1,¢,0) = p— 1 when p|c and is —1 when p 1t c.
(iii) Show that if p t a, then S(p,a,b,c) = (4—“> S(p,1,0,4ac — v?). Deduce that
PJL

S(p,a,b,c) =p <5>L when pla and pl|b, is 0 when p|a and p t b, and satisfies

Q) (p—1) when pfta and p|d* — 4ac,

S(p,a,5,¢) = <p<§>L when pt a(b* — 4ac). (54)

5.2 Quadratic Reciprocity

What Euler spotted was a very curious relationship between the values of

(),

when p and ¢ are different odd primes, which only depended on their residue classes
modulo 4. Of course, this was before the Legendre symbol was invented and he described
the phenomenon in terms of quadratic residues and non-residues.
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Example 5.8. Here is a short table of values for primes out to 29.

PNg| 3] 5] 7 [1L][13[17]19] 23] 29
310 | 1|1 | —1] 1 |-1]1]-1]-1
5 01| 0| =11 |=1|-1]1]=1]1
701|101 |=1|-1]|-1]1]1
1| 1|1 |=1]o0o|=1|=1]=1]1]=1
1301 | =1|=1]=1l0]1]=1]1]1
17| <1 =1|=1|=1| 10 |=1]|=1]-1
19 -1 1|11 ]=1l1]o0]1
2301 | =1]—-1|-1] 1 |=1|-1]0]1
29 | 1| 1| 1 |—=1] 1 |=1|-1]1

q
P

Table of < )L for odd primes p,q < 23.
Apparently if p=1 (mod 4) or ¢ =1 (mod 4), then (%)L = (§>L, butif p=¢g=3
(mod 4), then (%)L # <§>L.

Gauss was fascinated by this and eventually found at least seven (!) different proofs.
The first step in many of them is Gauss’ Lemma.

Theorem 5.4 (Gauss’ Lemma). Suppose that p is an odd prime and (a,p) = 1. Apply
the division algorithm to write each of the %(p — 1) numbers ax with 1 < z < %p as
ar = qp + ry with 0 < r, < p. Let m be the number of r, with %p <1y <p. Then we
have

where

m= 3 fa—mJ (mod 2).

1<z<p/2 p
This theorem enables us to evaluate quite a number of cases directly with some ease.
Example 5.9. Take a = 2. Then we begin by considering the numbers 2x with 1 < x <
%p. These numbers satisfy 2 < 2x < p. In view of the latter inequality, they are their

own remainder, i.e. r, = 2x, so we need to count the number of x with %p < 2x < p, that
18 ip <z < %p. Hence the number of such x is

= [2]-[2

2 41
Now suppose that p = 8k + 1. Then m = 4k — 2k is even. Likewise when p = 8k + 7 we
have m = 2k + 2 is also even. It can be checked similarly that if p = 3 or 5 (mod 8),
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then m is odd. Thus

2\ _J1 (p==+£1 (mod?y)),
(p)L B {—1 (p = £3 (mod 8)). (5:5)

One can check that another way of writing this is

0,

It 1s relatively easy to deal with the case a = 3 in a similar way.

Proof of Gauss’ Lemma. The proof is combinatorial - a kind of counting argument. We

consider the product
—1
a7 H T = H ax.

1<z<p/2 1<z<p/2

This is

H r, (mod p).

1<z<p/2

Let A be the set of z with p/2 < r, < p and B the z with 1 < r, < p/2. Then card A = m
and we can rearrange the product to give

a"T H T = <H rx> er =(-n™ (H(p — rx)> er (mod p). (5.6)

1<z<p/2 zeA zeB zeA zeB

Since |r, —ry| < pand r, —r, = a(r—y) (mod p) we have r, # r, when x # y. Thus the
1, are distinct. Also since pfa and 1 < z,y < p/2 we have p — 1, — 1, = —a(r +y) 0
(mod p). Therefore the p — r, with z € A are distinct from the r, with y € B. Hence
in the expression on the right in the £(p — 1) numbers p — r, and 7, are just a

2
permutation of the numbers z with 1 < z < %(p —1). Thus 1) becomes

o'z H r=(—-1)" H z (mod p)
1<z<p/2 1<z<p/2
and so, by Euler’s Criterion,
<2> =q'7 = (=1)™ (mod p).
bJL

Now we can complete the proof of the first formula in the theorem by our usual observation
that the difference between the two sides is —2, 0 or 2.
For the final formula we note that

re =az—p Hﬂ (5.7)
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so that 0 < r, < p. Now 0 < 2r,/p < 2 and so |2r,/p|] =0 or 1 and is 1 precisely when
p/2 <1y < p. Thus

m = Z |2r./p].

1<z<p/2

Moreover, by ((5.7)

20/p) = |2 2| %2

If
I‘_
=
o
2.
o

and the final formula follows. O

If we restrict our attention to odd a there is a useful variant of this.

Theorem 5.5. Suppose that p is an odd prime and (a,2p) = 1. Then

where

We also have

Proof. We have




74 CHAPTER 5. QUADRATIC RESIDUES

where
l _ (p—1)/2 \‘((l +p)l’J
r=1 p
(p—1)/2
ax
S {— ; J
1 p

If we take a = 1, then we have recovered the stated formula for

(+).

Then factoring out the formula for this give the result for
()
p)r

Now we come to the big one. This is the Law of Quadratic Reciprocity. Gauss called
it “Theorema Aureum”, the Golden Theorem.

]

Theorem 5.6 (The Law of Quadratic Reciprocity). Suppose that p and q are different
odd prime numbers. Then

or equivalently

We can use this to compute rapidly Legendre symbols.

Example 5.10.
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Example 5.11.
LY s (107Y (6 (2} (3
107 ), 101/, 101/, 101/, \ 101

= (0" () (0 (3) = enen -1

Example 5.12. Is 2% = 951 (mod 2017) soluble? 2017 is prime but 951 = 3 x 317. Thus

951\ [ 3 317
2017 ), \2017),\ 2017/,

Now by the law, since 2017 =1 (mod 4),

3 2007\ /1y _ )
2017 3 ), \3/),
317 _ (2007 /115y _ [ 5 23
2017/, \ 317 ), \317), \317),\317/,
Again applying the law, we have

(a1:), - (%),- (),

and

and
BN (BTY 18y (2)
317),  \ 23 ), \23/), \23/),
so that
SITY _
2017 ),
and thus

LY _
2017 ),

We can also use the law to obtain general rules, like that for 2 (mod p).

Thus the congruence is insoluble.

Example 5.13. Let p > 3 be an odd prime. Then

el (P
Now p is a QR modulo 3 iff p=1 (mod 3). Thus
{ p =1 (mod 3))
-7

=2 (mod 3)).



76 CHAPTER 5. QUADRATIC RESIDUES

We can also combine this with the formula in the case of —1 (mod p) which follows from
the Euler Criterion. Thus

<—_3) _J1 (p=1 (mod 3))
/)L -1 (p=2 (mod 3)).
We now turn to the proof of the law.

Proof of the Law of Quadratic Reciprocity. We start from two applications of the previ-

ous theorem. Thus
q p u+v
1 4 — (-1
(), (5), -~

1<z<p/2

-l

1<y<q/2

where

and

q
p
sum is the number of ordered pairs z,y with 1 < x < p/2 and 1 < y < gqz/p. Likewise

Observe that L—mJ is the number of positive integers y with 1 < y < gz/p. Thus the first

leyqﬂ {%J is the number of ordered pairs x,y with 1 <y < ¢/2 and 1 < x < py/q,

that is with 1 < 2 < p/2 and xq/p < y < ¢/2. Hence u + v is the number of ordered
pairs x,y with 1 <z <p/2and 1 <y < ¢/2. This is

p—1 ¢—1

2 2

and completes the proof. This argument is due to Eisenstein. [

5.2.1 Exercises

1. Evaluate the following Legendre symbols.

0 (1) -
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2. (i) Prove that 3 is a QR modulo p when p = £1 (mod 12) and is a QNR when p = £5
mod 12).

(ii) Prove that —3 is a QR modulo p for primes p with p =1 (mod 6) and is a QNR
for primes p = —1 (mod 6).

(iii) By considering 422 + 3 show that there are infinitely many primes in the residue
class 1 (mod 6).

3. Show that for every prime p the congruence
2% — 112" +362° =36 =0 (mod p)
is always soluble.

4. Find the number of solutions of the congruence (i) z? = 226 (mod 563), (ii) 22 = 429
(mod 563).

5. Decide whether 22 = 150 (mod 1009) is soluble or not.
6. Find all primes p such that 22 = 13 (mod p) has a solution.

7. Show that (z? — 2)/(2y? + 3) is never an integer when x and y are integers.

5.3 The Jacobi symbol

In Example|5.12] there were several occasions when we needed to factorise the a in (%) .
L

Jacobi introduced an extension of the Legendre symbol which avoids this.

Definition 5.3. Suppose that m is an odd positive integer and a is an integer. Let
m =pi'...p be the canonical decomposition of m. Then we define the Jacobi symbol by

(-1,

Note that interpreting 1 as being an “empty product of primes” means that

(5,1

Remarkably the Jacobi symbol has exactly the same properties as the Legendre sym-
bol, except for one. That is, for a general odd modulus m it does not tell us about the
solubility of 22 = a (mod m).

Example 5.14. We have

()66,

but 22 =2 (mod 15) is insoluble because any solution would also be a solution of v* =
(mod 3) which we know is insoluble.
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Properties of the Jacobi symbol
1. Suppose that m is odd. Then

), = G, G,

2. Suppose that the m; are odd. Then

(), = (), (),

3. Suppose that m is odd and a; = as (mod m). Then

(), (),

4. Suppose that m is odd. Then

5. Suppose that m is odd. Then

6. Suppose that m and n are odd and (m,n) = 1. Then

(2),(2), = o=

The first three of these follow easily from the definition. The rest depend on algebraic
identities combined with inductions on the number of prime factors, but proving them is
tiresome. For 4. we need to know that

m1—1 m2—1 m1m2—1

= 2
5 + ) ) (mod 2),
5. depends on
2 2 2, 2
= d 2).
s 73 g (mod?2)

6. Finally here one needs

[—1 m—1 n—1 m-1 In—1 m-—-1
. . = . 2).
2 5 T3 2 2 5 (wod2)
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Example 5.15. Return to Example where we evaluated (%)L. Now we don’t have
to factor 951. By the Jacobi version of the law

951\  (2017\ _ /115\ (951
(@), = (51), = (1), =~ (55),
/31N [115\ (22
“ ()~ (), = (&),
- (2) -3,
1), 1),

Note that we can process this like the Euclidean algorithm. Suppose we are interested

().

where n and m are odd. Follow the Euclidean algorithm and obtain

n

n=qm-+ry,
m = qoT1 + T2,

1 = q3r2 + T3,

Then provided that the m,n,ry, o are all odd, for suitable exponents ¢, t,, ... we obtain

(o), = (), =0 (),

If any of the r; should be even, then we adjust things by taking out the highest power of
2.

5.3.1 Exercises

1. Let n € Z and let n = (—1)"2"p]* ...pY be the canonical decomposition of n with
u=0or1,v>0,and each v; > 0 when r > 1.
(i) If v is odd, then let ny = |n|27" and choose m € N so that m =5 (mod 8) and

m (mod ng). Prove that
(),
m/ g
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(i) If v is even, but there is a j for which v; is odd, let n; = [n|27"p; ™ and choose

m € N so that m =1 (mod (4n;)) and m is a QNR modulo p,. Prove that

(),

(iii) If v is even, v, is even for every j and u = 1, choose m € N so that m = 3
(mod 4). Prove that
(),
m/ g

(iv) Prove that if n is not a perfect square, then there is an odd prime number p such

that
<9) — 1.
pJL

(v) Prove that if n is a QR for every odd prime number p not dividing n, then n is a
perfect square.
This is an example of the “local to global” principle.

2. Decide the solubility of
(i) 2> = 219 (mod 383),
(i) z* = 226 (mod 562),
(iii) 22 = 429 (mod 563),
(iv) 22 =105 (mod 317).

5.4 Other questions

There are many interesting problems associated with quadratic residues and the Legendre
and Jacobi symbols.

1. How many consecutive quadratic residues are there, that is how many x with
1 < x < p—2 have the property that x and x + 1 are both quadratic residues modulo p?

This number is )
o
4 P/ p L

r=1

The method of exercise 5.1.1.13 is useful here. How about the number of triples x,x +
1,2 + 2, or how about a fixed sequence of QR and QNR?

2. Given an N with 0 < N < p, how small can you make M, regardless of the value
of N, and ensure that the interval (N, N + M] contains a quadratic non-residue?

3. Let m be an odd positive integer, and for brevity write x(x) for the Jacobi symbol
(%) ;- For a complex number z define

L(zix) =) Xf;)-
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This converges for Rz > 0. There is a Riemann hypothesis for this function but we
cannot prove it. Also L(1,y) has some interesting values. For example if m = 3, then

L(LX) =

p
T 2mi
s $(2)
=1 L

was studied by Gauss in connection with several of his proofs of the law of quadratic
reciprocity. He showed that

4. The Gauss sum

o VP (=1 (mod 4))
" liyp (p=3 (mod 4)).

5.4.1 Exercises

1. (i) Prove that if x;(n) = (—=1)""Y/2 when n is odd and x;(n) = 0 when n is even,
then L(1,x1) = §
(ii) Prove that if x(n ) = (%) then L(1,x) =

3v3
(iii) Prove that if x(n (%) then L(1,y) = \/Lg log 3+2\/5
2. Letc,eC(n=1,2,...,p).

Prove that

3. For an odd prime p define

(i) Prove that if p { a, then

p
S.0) = 3 (14 (2) ) etrees
=1 P/ L
p

— (z) 627riaw/p
1 \P/ L

(ii) Prove that

ZISP, p(2p—1).
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(iii) Prove that

p—1 2

(0= Diml* =)

)
— T,
a=1 p L ’

p—1
=Y IS(pa)f
a=1

=p(p—1),

whence |7,| = \/p.

5.5 Computing Solutions to Quadratic Congruences

The first algorithm computes the Jacobi symbol

),

for a given positive odd integer n and integer m, and is just an immediate application
of the law of quadratic reciprocity together with the removal of any powers of 2 at each
stage and an evaluation of the corresponding

(%)

nJy

Algorithm 5.1 (LJ). Given an integer m and a positive integer n, compute (%)
1. Reduction loops.

7

1.1. Compute m = m (mod n), so the new m satisfies 0 < m < n. Put
t=1.

1.2. While m # 0

1.2.1. While m is even

put m =m/2 and, ifn =3 or5 (mod 8), then putt = —t.
1.2.2. Interchange m and n.
1.2.3. If m=n=3 (mod 4), then put t = —t.

1.2.4. Compute m = m (mod n), so that the new m < n.

2. Output.

2.1. If n =1, then return t.
2.2. FElse return 0.
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Generally we will refer to the second and third algorithms here as QC. They are
often attributed to Shanks (1973) and Tonelli (1891), but in one form or another they in
principle go back to Euler, Legendre and Gauss.

The second algorithm computes a solution x to

2 =a (mod p)
when p is an odd prime p £ 1 (mod 8).
Algorithm 5.2 (QC357/8). Given a prime p=3,5,7 (mod 8) and an a with (%) =
L
1, compute a solution to z* = a (mod p).

1. If p=3 or 7 (mod 8), then compute x = a»*Y/* (mod p). Return x.
2. If p="5 (mod 8), then compute x = aP3/® (mod p). Compute x> (mod p).

2.1. If 2> = a (mod p), then return x.
2.2. If 2> # a (mod p), then compute v = 22P~1/* (mod p). Return x.

Proof. The proof that this gives a solution is relatively easy. When p = 3 (mod 4) we
have ’%1 e N, so

= a®M/* (mod p)

makes sense and then

22 = a2 = gt =g (2) =a (mod p)
P/
by Euler’s criterion.
When p = 5 (mod 8), the only case at issue is when a?*3/* # a (mod p), so that
a?= /% £ 1 (mod p). But by Euler’s criterion a®1/2 = 1 (mod p), so a®=V/* = £1
(mod p), and hence a1/ = —1 (mod p). Thus the new choice of x gives

2% = P t3/AP=1/2 = (_g) (Z%)L = (—a)(=1)"*~V/8 = (—a)(=1) = a (mod p).

[

The final algorithm deals with the trickier case p = 1 (mod 8). This algorithm will
work for any odd prime, but the previous algorithm is faster for p Z 1 (mod 8).
Algorithm 5.3 (QC1/8). Given a prime p = 1 (mod 8) and an a with <%> =1,

L
compute a solution to x* = a (mod p).
1. Compute a random integer b with (%) = —1. In practice checking successively the

primes b= 2,3,5,..., or even crudely justLthe integers b = 2,3,4, ..., will find such a b
quickly.

2. Factor out the powers of 2 in p — 1, so that p — 1 = 2°u with u odd. Compute d = a
(mod p). Compute f =" (mod p).

3. Compute an m so that df™ =1 (mod p) as follows.
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3.1. Initialise mg = 0.

3.2. Foreachi=0,1,..., s—1 compute g = (df™)* " (mod p). Ifg = —1
(mod p), then put m;y1 = m; + 2. Otherwise take m; , = m;

3.3. Return m = myg. This will satisfy

df =1 (mod p), and m will be even. (5.8)

4. Compute v = a+1/2fms/2 (mod p). Return .

Proof. The proof that this works is a little more involved than the previous algorithms.
That x is a solution follows because

u+1 m 2 1
<a7f7> =a"tM ™ = adf™ = a (mod p).

The crucial thing is (5.8]). To prove this we first make some observations. We have

p—1

P =a""=0a"7 =1 (mod p)

by Euler’s criterion. Hence ord,(d)|2°7!. Also
fzs—l — 2 i = (mod p)
by Euler’s criterion. Moreover
fA=v"1=1 (mod p),

so ord,(f) = 2°.
Now we prove by induction on ¢ for 0 <14 < s that

(df™)* " =1 (mod p).
For the base case i = 0 we have my = 0 so that
(df™)? =d* =1 (mod p).
For the inductive step suppose that for some ¢ with 0 <7 < s — 1 we have
(df™)* ™ =1 (mod p).

Then .
(df™)* " = +1 (mod p).

If
(df™)* " =1 (mod p),
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then m; 1 = m; and so
237171

(df™i+) =1 (mod p)

as required. If .
(df™)*"" = =1 (mod p),

then m;, 1 = m; + 2¢ and so

9s—1—1

(dfmee > = ()T
_ (dfmi)257171f2571

1
= —pr

=1 (mod p)

once more, by Euler’s criterion. ]

5.5.1 Exercises

1. Write a computer program to implement (LJ), and use it evaluate the Legendre
symbols

(i) 40000000003 (i) 100000000057 (iif) 40000000003
100000000019 / ; ’ 40000000031 /.’ 100000000091 / , -

2. Write an algorithm (QC) to find the solutions to z? = a (mod p) where a are the
quadratic residues and p are the corresponding primes occurring in question 1. above. 3.

Consider the numbers

ay = 23456789023456787,
ay = 23456789023456789,
my = 77778888999911107,
mg = 555566667 77711111.

o) G Gl G

Assuming that the m; are prime, for those a,; for which the Legendre symbol is +1 solve

(QC)

Use (LJ) to evaluate

2> =a; (mod my).
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5.6 Notes

§1. Fermat and Euler had studied questions which in modern terminology can be de-
scribed in terms of the solubility of quadratic congruences. A. M. Legendre’s eponymous
symbol was introduced by him in “Essai sur la théorie des nombres”, Paris, 1798, p.
186. 1. M. Vinogradov made his conjecture on the least quadratic non-residue in “On the
distribution of quadratic residues and non-residues”, Zh. Fiz,-Mt. Obshch. Univ. Perm
2, 1-16, 1919. The estimate of D. A. Burgess’s result is in “The distribution of quadratic
residues and non-residues”, Mathematika 4(1957), 106-112.

Assuming the Riemann Hypothesis associated with the Dirichlet L-function L(s;x)
where x is the Legendre symbol, Ankeny showed that ny(p) = O ((log p)Z). For an account
of this see H. L. Montgomery, “Ten Lectures on the Interface Between Analytic Number
Theory and Harmonic Analysis”, American Mathematical Society, 1994, p. 176. ISBN
0-8218-0737-4.

Yu. V. Linnik “A remark on the least quadratic non-residue, Doklady Akad. Nauk
URSS (N.S.) 36(1942), 119-120, showed that if there are any primes for which ns(p) is
unexpectedly large, then they are rare. In particular he showed that if ¢ > 0 is fixed,
then the number of primes p with 2 < p < x such that ns(p) > (logp)© is at most

x2/c+f(z)

where f(x) — 0 as x — oo, and that if 6 > 0 is fixed, then the number of primes p with
2 < p < x for which ny(p) > p° is at most

C(6)loglogx

where C'(¢) is a positive number which depends only on ¢.

§2. Euler in 1783 had formulated a conjecture that if we take the primes p in the
residue class r modulo 4m, then the residue class m modulo p is always a QR modulo p
or always a QNR modulo p and moreover 4m — r is the same. That is, when p { 4m,

().

depends only on the residue class r in which p lies modulo 4m, and is the same for primes
in the residue class 4m —r. This follows at once from the LQR in our modern formulation.
The first correct proof is due to Gauss (1796). This was before Legendre invented his
symbol and Gauss used the much clumsier notation a Rp and aNp to indicate whether a
was a quadratic residue modulo p or a quadratic non-residue.

§3. Jacobi defined his symbol in C. G. J. Jacobi (1837), “Uber die Kreisteilung und
ihre Anwendung auf die Zahlentheorie”, Bericht Ak. Wiss. Berlin, 127-136.

§4. The investigation of the distribution of patterns of k consecutive QR and QNR is
intimately connected with questions concerning the zeros of the zeta function of curves
y*> = f(x) over finite fields. See the article on “Quadratic residue patterns modulo a
prime” by Keith Conrad at https://kconrad.math.uconn.edu/blurbs/
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Exercise 5.5.3 shows that the sum

p

S(p,a) = e(aaz®/p)

r=1

is closely related to 7,. Gauss showed that 7, = \/p when p =1 (mod 4) and 7, = i\/p
when p =3 (mod 4) and used this as the basis of one of his proofs of LQR.
We know less about the sums

p

Sk(a,p) =) e(az*[p).

r=1

We do know that if p t a, then

|Sk(pv Cl)| < ((k>p - 1) - 1)\/2_9

but in general we do not know how

p2Sk(p, a)

is distributed. In a few cases, especially the cubic case when p =1 (mod 3) it is known
that the argument is “uniformly distributed”. See D. R. Heath-Brown, “Kummer’s con-
jecture for cubic Gauss sums”, Israeli. J. Math. 120(2000), 97-124 and the reference to
the earlier paper of Heath-Brown and Patterson.
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Chapter 6

Primality and Probability

6.1 Miller-Rabin

In its simplest form the Miller-Rabin test is a test for composites, although with some
compromises it is also an effective test for primality.

Theorem 6.1. Let n € N be odd, n > 1 and take out the powers of 2 from n — 1 so that
n—1=2"
where v is odd. Choose a € {2,3,...,n—2}. If
a’ #1 (mod n) and a®* # —1 (mod n) for 1 <w < u— 1, (6.1)
then n is composite and a is a witness.

Proof. 1If (a,n) > 1, then (/6.1 will hold and n will be composite. Suppose that (a,n) =1
and n were to be prime. Then by Fermat-Euler we have

nla" ' —1=a"""-1=(a"-1)(a’+ 1)@ +1)...(a> " +1) (6.2)
and n would have to divide one of the factors on the right, contradicting (6.1]). ]

If we can find a witness, then we have certainty that n is composite. There are some
observations that one can make in association with this. It is a good idea to check a
couple of things before applying the test since they can be checked very rapidly.

A. Check n for small prime factors p for, say, p < logn.

B. Check that n is not a prime power, n = p*. One can do this by checking to see if

nl/k _ Lnl/kJ

n

for2 <k < llog
— — log2

always exist.

. These remarks combined with the next theorem show that witnesses

89
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Theorem 6.2. Ifn is odd and has at least two different prime factors p and q, then they
can be chosen so that '
p—1=21q¢—1=2"m,j <k,

As it stands this theorem only proves the existence of witnesses. Since we do not
expect to have found numerical values for p or ¢, it does not tell us how to find the a.
However it can be used to show that we do not have to search very far. By the way,
this process reminds me that much of mathematical research, indeed much of scientific
research, is forensic in nature. We are currently studying the pathology of factorisation.

When (a,n) = 1, the expression

(600

is 0 or 1, and when it is 1, a is a witness. Thus the number of witnesses for n is at least

i (+())0-6))

a=1

and such an a 1s a witness.

(a,n)=1
Moreover . . .
Z(E)zz<ﬁ>zz(ﬁ) —0
a=1 p L a=1 q L a=1 rq J
(a,n)=1 (a,n)=1 (a,n)=1

(see Exercise [6.1.1)). Thus

B0 6)-

a=1
(a,n)=1

Therefore at least a quarter of all reduced residues modulo n act as witness. Hence we
can proceed by picking N values of a at random. Then the probability that none of them
are witnesses is at most (3/4)". Therefore if we pick, say, at least 10logn numbers a at
random, then we can be practically certain of finding a witness.

If we want some kind of absolute certainty, then we can assume the truth of the
Riemann hypothesis for the three functions

L(six) =) X(m)

mS

m=1
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=)= () m=(2) s

which in practice means that we have to assume it for every Jacobi symbol modulo n
since in principal we do not know the numerical values of p and ¢. This hypothesis implies
that if n is large, then for N = 2(logn)? we have

;V (1—r/N) (1 + (%) L) (1 - (g)J (logr) > 0. (6.4)

T prime

with

In turn, this tells us that not only is there a witness a < 2(logn)?, but we can suppose
that it is prime.

Proof of Theorem[6.3. Let p and ¢ be as in the hypothesis and suppose they divide n to
order d and e respectively. If we choose any QR x modulo p, any QNR y modulo ¢, and
any z with (z,np~% ) = 1, then by the Chinese Remainder Theorem, Theorem
it follows that there are a = = (mod p), = y (mod ¢) and = z (mod np~9g=°¢) which
satisfy the hypothesis. If a®~! # 1 (mod n), then none of the factors on the right of
can be divisible by n, so any such a will be a witness. Thus we can suppose that we have
a"'=1 (mod n).

Let u and v be as in Theorem [6.1] so that n — 1 = 2%v with v odd. For 0 < w <u—1
we have

A +1=(a"-1+1)* +1=2 (mod a” —1).

Hence
(" —1,a*"" +1)|2.

Likewise when 0 < w < x < u — 1 we have
a4+ 1=0@*"+1-1)""+1=2 (mod a** =1)
and so
(a® +1,a*" +1)[2.

Thus p and ¢, and a fortior: n cannot divide two different factors in (6.2]).
Thus it remains to just consider the case when n divides exactly one of the factors
a’ — 1, a®*"" 4 1. The hypothesis implies that

0+,

Hence, by Euler’s Criterion, Theorem [5.2]

p—1 q—1

a2z =1 (modp),a? =—-1 (mod q).
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Let e = ord,(a) and f = ord,(a). Then

p—1
2

e

qg—1
Recall that the hypothesis also states that
p—1=21q¢—1=2"m,j <k

Hence
e=2, f=2"m with0<i<j—1,0UIl, m|m.

In particular
0<i<yj<k. (6.5)

Recall n divides exactly one of the expressions
a’—1,a"+1,....,a> " +1.

Consider the different possibilities. If n|a” — 1, then ¢¥ =1 (mod ¢) and f|v. But f is
even and v is odd, so this is impossible.
If n|a*" + 1 for some s with 0 < s < u — 1, then
2stly 2%v
a =1 (modn), a*’ = -1 (mod n).
Thus
e|2°tv, e 1 2%,

and since e = 2'I' we have '|v,i = s + 1. Moreover
f125T o, f = 28m/ 28w/ |25T e, m/ v, k < s 4 1.
Thus k& < i which contradicts (6.5). Hence a is a witness. O

Note that the previous theorem depends on the theory of quadratic residues and
non-residues. Thus it should be no surprise that showing that there is a small witness is
similar to showing that there are small quadratic non-residues. Thus the best bound for a
leads to questions which have a similar provenance to that concerning the least quadratic
non-residue ns(p) discussed in Theorem and its preamble, and in . In particular
Linnik’s work quoted there suggests that any composite n with no small witnesses would
be incredibly rare.

Since no-one has ever come close to disproving the Riemann Hypothesis [ am going
to suggest the second approach, which I outline in the following algorithm.
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Algorithm 6.1 (Miller Rabin). Assume that n is odd.
1. Check n for small factors not exceeding logn.
2. Check that n is not a prime power.
3. Take out the powers of 2 inn — 1 so that

n—1=2%

with v odd.
4. For each a with 2 < a < min {2(logn)?,n — 2} check the statements

nla’ — 1, nla’ +1,...,nla® "+ 1.

5. If a is such that they are all false, stop and declare that n is composite and a s a
witness.

6. If no witness a is found with a < min{Q(log n)?,n — 2}, then declare that n is
prime.

There are a couple of further wrinkles that can be tried in this process. Before doing
the divisibility checks in 4, check that (a,n) = 1 because if (a,n) > 1, then one has a
proper divisor of n and not only is n composite but one has found a factor. With regard
to the construction of a in the proof of Theorem we see that a is a QNR with respect
to one of the prime factors of n, and we observed in Section §5.1 that the least QNR
modulo a prime is itself a prime. Thus it is no surprise that in the use of the Riemann
Hypothesis mentioned above the a < 2(logn)? which arises is in fact prime. Thus we can
restrict our attention to prime values of a.

In this form the test obviously runs in polynomial time.

Example 6.1. Let n = 133. Then
n—1=2%x33

and
23 = 50 (mod 133), 2°° = 106 (mod 133)

SO
nt2% —1,nt2¥ +1,n2%+1

Thus n is composite and 2 is a witness.
To establish primality in a non-trivial case involves quite a lot of calculation and

is best left to a computer program. However to illustrate the method here is a trivial
example.
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Example 6.2. Let n =11. Then n —1 =2 x 5 and we have the following

2° =32=—1 (mod 11)
3>=243=1 (mod 11)

45 =(2°)*=1 (mod 11)
5°=3125=1 (mod 11)

6° = (—5)° = —1 (mod 11)
7° = (—4)> = —1 (mod 11)
8° = (-3)° = —1 (mod 11)
=(3°)>=1 (mod 11)

There is no witness, so n is prime. Of course we knew that! Even for a number like
211 this would be heavy handed and is one of the reasons for an initial range of trial
division. For large n one will only need to consider a relatively small range of a.

6.1.1 Exercises

1. Prove that if n is odd and p and ¢ are different prime factors of n, then

O ORI

m=1 m=1 m=1
(m,n)=1 (m,n)=1 (m,n)=1

2. Write a programme to implement the Miller-Rabin test in its deterministic form in
which one assumes the Generalized Riemann Hypothesis, and use it to test the following
six numbers. The output from your programme should read, for each number, either “n
is composite. a is a witness.” where n is the number being tested and a is the value of
the witness, or “n is prime”. The run time on each of these numbers should not exceed
a minute or so.

(a) 3215031751,

(b) 341550071728321,

(c) 1234567891234567919),

(d) 3825123056546413051,

(e) 1296001987165015643369032371289,

(f) 59545797598759584957498579859585984759457948579595 794859456 799501.

3. Write a computer program to implement (LJ), the evaluation of the Jacobi symbol,
and use it

(i) to find the primes p with 83 < p < 113 for which a = 73 is a quadratic residue
modulo p,

(ii) to find the least quadratic residue a > 1 and least positive quadratic non-residue b
modulo p of whichever of 370370384407407431 and 370370384407407539 is prime p. You
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might like to use your previous implementation of the Miller-Rabin test to find which, if
any, of these numbers is prime.

4. Consider the numbers

ap = 23456789023456789923456789923454566 777888990189,
ay = 23456789023456789923456789923454566 777888990190,
my = 2447952037112100847479213118326022843437705003126289,
mo = 59545797598759584957498579859585984759457948579595794859456799501.

m J’ m J’ m! J’ mg J.

For those m; which are prime (Miller-Rabin is useful here) and those a; for which the
Legendre symbol is 41 solve (QC)

2 =a; (mod m;).

6.2 Probability

We have already used the term “probabilistic” informally in the previous section without
saying precisely what we mean.

Definition 6.1. Suppose that we have a finite set A of cardinality M, and a subset B
of cardinality N. In general we will suppose that the elements of B have some special
property that marks them out from those in the complement of B with respect to A. If
we pick an element of a € A without fear or favour, then we define the probability that

a € B as
N

M.
It is also possible to define probability for elements of infinite sets, but then we have
to be concerned with how we measure the size of the sets, and this involves the much
more sophisticated subject of measure theory. Fortunately we have no need of that here.

Example 6.3. Let A={1,2,...,. M}, let e N and 0 <r < q and let
B(qg,r)={a€ A:a=r (modq)}.

Then

N = card B(q,r) =1+ {M_TJ :

q
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Now M v
r_l L TJS —r
q q q
and so
—1<——<N——<1—f<1
q q q
Therefore

1 n 1 - N - 1 n 1
M qg M g M
Thus if M 1is large compared with ¢ we can see that the probability that an element of a

1s in B is close to .

q

Well, that seemed pretty straightforward. But consider the following. Suppose we
have a class of with s students. What are the chances that there are two with the same
birthday? For simplicity assume there are no leap years. Well in the population at large
there are 3652 pairs of birthdays and of those pairs only 365 will be the same. Thus if
you pick a random pair of people you might conclude that only one in 365 pairs have the
same birthday so the class will have to be really large, with getting on for at least 365
members.

Well look at it this way, The number of possible configurations of birthdays for s
people is 365° - each person can have any one of 365 possibilities. Let A be the set of
all such configurations. One can think of the elements as being s-tuples (dy,ds, . .., ds)
with each entry in the s-tuple being a number d; in the range {1,2,...,365}. Then
M = card A = 365°

In how many of those s-tuples could all the entries (birthdays) be different? Let B
the corresponding subset of A. Then we are interested in the N = card B. Well

N =365(365—1)...(365 — s + 1) (6.6)

Think of it this way. The first person’s birthday has 365 possibilities, i.e. the number of
choices for d; is 365. The second person’s birthday d, then only has 364 choices, and so
on. Thus the number of ways in which all the birthdays are different is the number of
s-tuples in which the entries are different and this is . Thus the probability that an
arbitrary member of A is in B is

p(s):%: <1—%> (1—%)...(1—‘9?);51).

Thus the probability that at least two members of the class share a birthday is

1—,@):1—(1—%) (1—%)...(1—33g51>.
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s pls) | s pls)
21 .B563...| 22 .5243...
23 .4927...124 .4616...
25 4313...126 .4017...
27 3731... |28 .3455...
29 .3190...30 .2936...
31 .2695...| 32 .2466...
33 .2250... |34 .2046...
35 .1856... |36 .1678...
37 .1512... 138 .1359...
39 1217...140 .1087...
41 .0968... |42 .0859...
43 .0760... |44 .0671...
45 .0590... 146 .0517...
47 .0452... 148 .039%4...
49 .0342... |50 .0296...

The probability p(s) that a class of size s does not have two birthdays the same.

This shows that if the class has 23 members, then it is more likely than not that there
will be two people sharing a birthday. This class has 48 members so it is practically
certain that two members will have the same birthday. This is the birthday parador and
its generalization plays an important role in establishing coincidences in computations.

We need to generalize this. Let D be the number of possible values for each entry in
the s-tuple - so we are now supposing that our year has D days! Then M = card A = D*
and N = card B is

N=DD-1)...(D-N+1)

so that the probability that there are no coincidences in the entries in an arbitrary s-tuple

15 we(5)(05) (55

Thus if this number is smaller than 0.5 we could conclude that amongst all the s-tuples
it is more likely that at least one s-tuple will have two entries the same than that all
s-tuples will have all entries different. In a particular case we might ask how large s has
to be in terms of D that this probability is smaller than some number o where 0 < o < 1,

so that
s—1 k?
p(s):H(1—5> <o.

k=1
Since it is easier to work with sums than products, we can rewrite this as

1 1 1
log — = log ——— > log —.
TERP IR R
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Of course it makes sense to suppose that s is somewhat smaller than D, and so we can
use the expansion for the logarithmic factor to obtain

log — = — > log —. (6.7)

oo s—1 ]{?h
=22
h=1 k=1
When h =1 the sum over k is
s(s—1)
2D
and when h > 2 all the terms are positive and the h-th one is at most
(s — 1)1
hDh
Thus if we suppose that
s—1 k 1
— > log — .
5 > log —, (6.8)
k=1
then by (6.7)
1 1
log — > log — 6.9
o8 gy 78 (6.9)
will certainly hold.
Summing the series in gives
s(s—1) 1
log —. 6.10
5 > los (6.10)

If we suppose also that D is large and s is smaller than D?/3, then the contribution from
the terms on the left of (6.7) with A > 2 will be small and we will not lose much by
supposing the last inequality. Nevertheless we always have

1 s(s—1)

1
©8 p(s) ~ 72D

Thus we see that, once s gets somewhat larger than /D, when we pick an s-tuple at
random we are quite likely to find two entries the same. Even for a number as small as
D = 365 this quite crude approximation shows that p(s) < % when s = 23.

The inequality can be rearranged to give

exp (—3(3521)> <o (6.11)
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and so if that holds, then we have
p(s) < o. (6.12)

This reveals that the probability is dropping off quadratically in the exponent, and once
s gets past v/2D drops off incredibly rapidly. Thus even if o is taken to be quite small
one does not have to take s much bigger than v/D to achieve the desired result. In other
words, if s is large compared with v/D, then it will be almost certain that there will be
coincidences. By the way, some attacks on security systems take advantage of this and
we will make use of it later in one of the factoring attacks.

6.2.1 Exercises

1. The Martian year is approximately 668 Martian days. Compute the probability p(s)
for a class of s Martian students when 21 < s < 50. For which size class of Martians is
one more likely than not to have two Martians with the same birthday?

For a Mercurian the solar day appears to be longer than the solar year, so sadly on
Mercury the human concept of birthday does not make sense.

6.3 Notes

§1. There are excellent discussions of the Miller-Rabin test at https://kconrad.math.
uconn.edu/blurbs/ugradnumthy/millerrabin.pdf and https://en.wikipedia.org/
wiki/Miller-Rabin_primality_test. For example the former shows by a more sophist-
icated argument than the one we present that at least % of all reduced residues modulo n
are witnesses when n is composite. This is due independently to G. L. Miller, “Riemann’s
Hypothesis and tests for primality”, J. Computer and System Sciences 13(1976), 300-317
and L. Monier, “Evaluation and comparison of two efficient probabilistic primality test-
ing algorithms”, Theoretical Computer Science 12(1980), 97-108. See also M. O. Rabin,
“Probabilistic algorithm for testing primality”, J. Number Theory 12(1980), 128-138.

The advantage of the Miller-Rabin test is simplicity. The disadvantage is that it is
either probabilistic or depends for certainty on an unproved hypothesis. There are more
sophisticated tests, such as the Elliptic curve primality test which gives certainty but
for which the worst case runtime is not known or the Baillie-PSW primality test which
is probabilistic. There are some claims that the latter is deterministic but as far as I
am aware there is no published worst case runtime. For an overview of this subject see
https://en.wikipedia.org/wiki/Primality_test. It seems clear from the discussion
there that the only test which is deterministic and runs in reasonable time for very large
n is the Miller-Rabin test under the Riemann Hypothesis for Jacobi (and Legendre)
symbols. T have much greater confidence that this form of the Riemann hypothesis holds
than that there are no counterexamples to the other tests. I would add that even if the
hypothesis turned out to be false, Linnik’s theorems suggest that any counterexamples
to Miller-Rabin would be incredibly rare.


https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
https://en.wikipedia.org/wiki/Primality_test
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H. L. Montgomery, “Topics in Multiplicative Number Theory”, Lecture Notes in
Mathematics, Springer, vol. 227, 1971”7, pages 123-125, shows for a more general class of
functions x than the x in (6.3]) that on the Riemann Hypothesis for each y we have

Z (1 —m/M)x(m)logm < CyN'?logr
m<N
m prime
where r is the modulus of y, so 2 = p or ¢ or pq in our cases. He also observes that if
x(m) = 1for all m < N, then the sum is > Cy,N. The C} and C; are positive constants, so
it follows that there is a prime m < C'(logr)? with x(m) # 1 where C is another positive
constant. There is also an account of this on page 179 of H. L. Montgomery, “Ten
Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis”,
American Mathematical Society, 1994, p. 176. ISBN 0-8218-0737-4. Explicit values for
the constants are given by E. Bach, “Explicit bounds for primality testing and related
problems”, Mathematics of Computation, 55(191)(1990), 355-380.

It seems quite likely that holds for N as small as C(log N)loglog V.

§2 It is believed that the birthday paradox was first discovered by H. Davenport in
1927 and first published by R. Von Mises, “Uber Aufteilungs- und Besetzungswahrschein-
lichkeiten”, Revue de la faculté des sciences de I'Université d’Istanbul 4(1939), 145-163,
reprinted in P. Frank, S. Goldstein, M. Kac, W. Prager, G. Szego, G. Birkhoff, eds. Se-
lected Papers of Richard von Mises. Vol. 2. Providence, Rhode Island: Amer. Math.
Soc. pp. (1964), 313-334.



Chapter 7
Pollard’s Methods

7.1 Pollard rho

John Pollard, in the 1970s, created a number of different techniques for factoring large
integers. The Pollard rho is named for a way of representing the iterative process which
looks like the Greek lower case rho, p. Suppose you start from some object F,, and
successively compute Pj, Py, Ps, ... and that sooner or later you find some pair j < k so
that P; = P;. Then Py, = P11 and so on. That is the sequence just repeats itself with
period k£ — j. We can represent this as a p, where Fy is at the base of the tail, and P; is
where the tail meets the loop.

How this works to factorize n in the case of Pollard rho is that one chooses some
polynomial, normally irreducible over Q, like

flz) =2 +1,
pick an zy at random and successively compute

1 = f(zo) (mod n),
zy = f(x1) (mod n),
z3 = f(22) (mod n),

Since there are only n residue classes, sooner or later there has to be a repetition. We
then check
GCD(z; — zj,n)

for each pair 7,7 and hope to find a non-trivial factor of n. There is no guarantee of
finding one quickly, but sometimes one is found. The usual procedure is to stop after a
certain amount of time and try a different polynomial f.

What is the theory? Suppose d is a proper divisor of n. For every i let y; = x;
(mod d). Then y; = z; = f(z;-1) = f(y;—1) (mod d). Thus sooner or later y; = yy

101
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for some j, k with j # k. Then z; = y; = yr, = x;, (mod d). Probably, and hopefully,
xj # v so d|GCD(x; — xy,n) and the GCD will differ from n.

How far should we expect to go before finding a solution? Given a prime p < \/n
with p|n we are seeking different numbers in the same residue class modulo p. If we have
x1,%s9,...,Ts created at random, this is akin to the birthday paradox with a year that
has p days and a class size of s. Thus we can expect that with s not much bigger than
VP < n'/* we will find a solution.

Example 7.1. Let n = 1133 and f(z) = 2> + 1. Of course 11|1133.
Take xo = 2. Then x1 =5, x9 = 26, x3 = 677, x4 = 598. Now

(x1 —x0,n) = (3,1133) =1
(29 — x9,n) = (24,1133) =1,
(3 — x9,m) = (675,1133) =1,
(x4 — x0,n) = (596, 1133) = 1,
(xg —x1,n) = (21,1133) =1,
(x3 —x1,n) = (672,1133) =1,
(x4 —x1,n) = (593,1133) =1,
(x3 — x9,n) = (651,1133) =1,
)

(24 — T2, n) = (572,1133) = 11.

Not very efficient, but it illustrates the idea.

The method can be speeded up as follows by an idea due to Floyd. We want to know
when we have reached the loop. Think of this as a race with two runners. If one is
running twice as fast as the other, the point at which the faster one comes round the loop
to overtake the slower one is the place where the tail meets the loop. With this in mind,
let 2y = ¢ and then at the j-th step compute x; as above and

21 = f((z)) (mod n),
Then
2 = Taj,
so we are computing x; and xy; simultaneously. If z; and x; with j < k are the smallest
pair with z; = 2, (mod d), let | = k — j. Then

T = Tivn (mod d)

for every ¢ > j and every r > 0.
Take ¢ = [[j/l] so that i > j and r = [j/l]. Then rl =i and so

T = 29 = z; (mod d).

Thus we only need check
GCD(z; — x;,n) = GCD

and this really speeds up the computations. In the previous example.
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Example 7.2. Let n = 1133, f(z) = 2*+ 1 and zo = 2.
Then we compute

x1 =5,21 =26, (21 —x1,n) = (21,1133) =1,
Ty = 26, 29 = 598, (29 — x9,n) = (572,1133) = 11.

That is more like it!
A less obvious example

Example 7.3. Let n =713, f(z) = 2® + 1 and xo = 2.
Then we compute

ry = 5,21 = 26, (21 —x1,n) = (21,713) =1,
To = 26, 29 = 584 (29 — x9,n) = (558, 713) = 31.

There are a number of more sophisticated variants of this which are designed to speed
the algorithm up. Generally there is no rigorous proof but it is believed that the run
time is normally proportional to \/p where p is the smallest prime factor of n and so in
the worst case, for a composite number the run time is proportional to n'/%.

7.1.1 Exercises

1. Write a programme or script to implement Pollard’s “p” (in Pari the exponentiation,
gcd and mod algorithms are already programmed in, although for large exponents it is
necessary to use the “binary expansion / successive squaring” method) and use it to
factorise 1231331, 9912409831, 950161333249.

7.2 Pollard p-1

Here we take a fairly large number K and hope that n has a prime factor p such that
none of the prime factors of p — 1 exceed K. To explain the method we will assume a
little more, namely that

p— 1|K!

Obviously we do not want to compute and store K!, which will be huge. Thus for some
a coprime with n we define g = a and successively compute

rr =2y, (mod n) and GOD(x, —1,n) (k=1,2,3,...,K),

stopping if the GCD reveals a proper factor of n. Since n is large we can expect that
z Z1 (mod n), but if p|n and p — 1]k!, so that k! = m(p — 1) for some m, then we have

rp=a" = ()™ =1 (mod p).
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Example 7.4. Consider our old friend 1133. Let a = 2. Thus
g =211 =22 =4,2y =43 = 64,
T3 = 64* = 16777216 = 719 (mod 1133), (718,1133) = 1,
ry = 719° = 192,151, 797,699,599 = 1101 (mod 1133), (1100, 1133) = 11.
Now look at the less obvious example we considered above

Example 7.5. Let n =713, and a = 2. Thus
o =201 =2 =4,y = 4> = 64,

z3 = 64* = 16777216 = 326 (mod 713), (325,713) = 1,
24 = 326° = 3,682,035,745,376 = 311 (mod 713), (310,713) = 31.

In practice for large numbers the elliptic curve method is faster and the Pollard p — 1
has largely disappeared. It uses the group structure of the powers of @ modulo n. The
elliptic curve method is based on a similar basic idea but takes advantage of the richer
underlying group structure of elliptic curves.

7.2.1 Exercises

1. Write a programme or script to implement Pollard’s “p—1" (in Pari the exponentiation,
gcd and mod algorithms are already programmed in, although for large exponents it is
necessary to use the “binary expansion / successive squaring” method) and use it to
factorise 1231331 and 950161333249.



Chapter 8

The Quadratic Sieve

8.1 Prolegomenon

There have been many factorization algorithms developed with the intent of finding ¢, x, y
so that

2

tn = 2% — %, (8.1)

going back to Fermat in the case t = 1 and Legendre for general t. One of the lines of
attack was through the use of continued fractions. It seems to have been periodically
rediscovered, for example by Kraitchik and, most notably, by Lehmer and Powers in 1931
and then developed further by Morrison and Brillhart in 1975 who showed that the advent

of modern computers made it a practical method. The idea is to consider the continued

fraction of vitn

1
Vi = ag+ —

1T gt

This expansion is actually periodic, and truncating the expansion after k terms produces
an approximation

A

B (8.2)

to Vtn. In particular
A —tnBi = (-1)"'R, (8.3)

where Ry, is relatively small. By the way the approximation (8.2 turns out to be exactly
the approximation that would arise from an application of Dirichlet’s theorem, Theorem
2.2l Thus we have a solution to

A2 = (=1)*'Ry, (mod n).

Having computed (—1)*"*Ry, for k=0, ... K one looks for a subset K of the k such that

the product
H (_ 1)k—1Rk
kek
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is a perfect square. Then for

R* = H(—l)k’le (mod n), A= H Ay, (mod n)
kek kek

one has
A? = R* (mod n)

and hopefully GCD(A + R, n) provides a proper factor of n.
Things then developed very rapidly culminating in 1981 with what we now know as
the Quadratic Sieve (QS).
The expression in on the left can be thought of as an indefinite binary quadratic
form
r? — tny2.

Gauss had already studied such forms and had introduced the idea of “composition” of
forms. This lead Shanks to bring such ideas to the party, and gave arise to an alternative
version of the method usually known as SQUFOF (SQUareFOrmsFactorization). This
has a worse case runtime proportional to n'/4, so does not compete in that regard to the
other methods described here. However SQUFOF is sufficiently simple that it can be
implemented on a pocket calculator and the instructor of this course has a version on his
mobile phone.

8.2 The Quadratic Sieve
Recall that in Lehman’s method the aim is to find x,t so that
z? — dtn

is a perfect square. In the discussion above of the continued fraction approach we saw
that an alternative way to achieve this is to find x,...,z, and yy, ..., y, such that

y; = o7 (mod n)

and
(x1...2,)° =y ...y, = 2° (mod n).

However we want something better than trial and error.
Idea. Initially we consider
w?—n

although eventually we may have to consider other polynomials. The data we garner from
this will ultimately enable us to find ¢,z such that 2% — tn is a perfect square. Suppose
that each of the y; has only small prime factors, say we have p < B for every p|y,. For
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example take B = 7 and suppose we found y; = 6,y2 = 15,y3 = 21,y4 = 35. Then we

would have
Y = 21315070’ Yo = 20315170’y3 — 203150717 Yy = 20305171

so we can associate with these the four vectors

vi = (1,1,0,0),vs = (0,1,1,0),v5 = (0,1,0,1), v4 = (0,0,1, 1).

Then we want to find integers e; = 0 or 1 so that
e1vi + eave + e3vs + e4vy =0 (mod 2)
where 0 = (0,0,0,0). Thus e; =0, e3 = e3 = e4 = 1 will do and

YWysysys = 15.21.35 = (3.5.7)% = (105)°.

Thus we can find perfect squares by vector addition. In other words solving linear equa-

tions. In practice this in turn means Gaussian elimination.

Definition 8.1. Given a positive real number B we say that an integer z is B-factorable
when every prime factor p of z satisfies p < B. To emphasise the fact that in our situation
only certain primes (but also —1) may occur we will also use the term P-factorable where

P is a set of primes, probably augmented by —1.

Note that the term B-smooth is commonly used instead. The word “smooth” has

many better uses in mathematics.

Algorithm 8.1 (QS.). We are given an odd number n which we know to be composite
and not a perfect power. The objective is to find a non—trivial factor of n by first finding

x and y so that x* = y* (mod n) and then checking ged(x £y, n)..
1. Initialization.

1.1. Pick a number B as the upper bound for the primes in the factor base
P. Theory says take B = [L(n)'/?] where L(n) = exp(y/lognloglogn),

but in practice a B somewhat smaller works well. Also, adding extra primes
suggested by the sieving process can be useful and if one uses the wrinkle in

5.3 below, then the prime p is adjoined to the factor base P.

1.2. Set pg = —1, p1 = 2 and find the odd primes ps < p3 < ... < pg < B
such that (L) =1. Then P = {po,p1,...,px} and cardP = K + 1 The
Algorithm Lf] 1s useful here.

1.3. Fork =2,...,K find the solutions +t,, to x> =n (mod py) by using
Algorithms[5.4 and[5.9, QC357/8, QC1/8.

2. Sieving.
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2.1. Let N = [\/n]|. Sieve the sequence x> —n with v = N + j, j =
0,+1,%2, ... until one has obtained a list of at least J > K + 2 B-factorable
x? — n and their factorizations (K + 2 is somewhat arbitrary and can be
increased if necessary but in the first example below is K + 1 instead). This
could be done by using a matriz, with initially B* columns (B? is somewhat
arbitrary and can be increased if necessary) so that each column is a K + 3
dimensional vector in which the first entry is x, the second is v* —n, and the

k + 3-rd entry will be the exponent of py in x> — n.

2.2. For each prime py in the factor base divide out all the prime factors py
in each entry x> —n with x = +t,, (mod py), recording the exponent in the
k + 3-rd entry in the associated j-th vector. Once the primes start to grow
this speeds things up significantly.

2.3. If the second entry in a column vector has reduced to 1, then x*> —n is B
factorable. If it has not completely factored then one can discard that column,
or at least put it aside in case one needs to extend the factor base later. Theory
tells us that we will need at least K + 1, and generally somewhat more, say
J, completely factored, which is the reason for taking so many columns in the
first place.

3. Linear Algebra.

3.1. Form a (K + 1) x J matriz M with the rows being formed by the 3-rd
through K+ 3-rd entries of the row vectors arising in 2.2, but with the entries
reduced modulo 2. It is convenient to label columns as j = 1 through J and
the corresponding x as xy through x;.

3.2. Use linear algebra (Gaussian elimination, for example) to solve
Me =0 (mod 2)

where e is a J dimensional vector of Os and 1s (not all 0/). It is likely that one
will need more than one solution before finding a factorization of n. Gaussian
elimination or standard linear algebra packages should give a basis for the
space of all solutions.

4. Factorization.

— €1 .62 e€J
4.1. Compute x = x7'xy? ... 2% 5, modulo n and

y= /(a3 =) (a3 — e (@) — )

modulo n. The value of x can be computed by using the first entries in the
column vectors in the original matriz and the square root in the definition of
y should be computed using the factorizations in the body of that matrixz. Note
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that all multiplications should be performed modulo n so nothing bigger than
n? will occur.

4.2. Compute | = ged(x —y,n), m = ged(z +y,n).

4.3. Return l, m. 4.4. If necessary repeat for all solutions e until a non-
trivial factor found.

5. Aftermath.

5.1. If no proper factor of n found, try one or more of the following.

5.2. Ezxtend the sieving in 2.1 to obtain more e and pairs x, y. As a matter
of policy the original sieving probably should be conducted so as to obtain K’
pairs with K" somewhat more than K + 2.

5.3. Use another polynomial in place of x> — n, or rather, be a bit more
cunning about the choice of the x in 2.1. Choose a large prime p for which
b>—n =0 (mod p) is soluble, and compute b. Then (pr+b)>*—n =0 (mod p)
and x can be chosen so that f(z) = ((px 4+ b)*> —n)/p is comparatively small
since p 1S large, so the sieving proceeds relatively speedily, there is a better
chance of a complete factorization of f(x), and we only have to augment the
factor base with the prime p.

The most time consuming part of this algorithm is the sieving. Note that just re-
stricting the x to x = +t;. already speeds it up considerably but this is still usually the
slowest part. The linear algebra can also be speeded up by various techniques, especially
those developed for dealing with sparse matrices.

Although the numbers in the following example are much smaller than would occur
in a practice the example does illustrate the complexity of the basic quadratic sieve.

Example 8.1. Let n = 9487 and take the sieving limit B = 30. We first need to check
which primes p < 30 will occur in the method. Thus for each odd prime p < 30 we need
to ascertain whether n is a QR or a QNR modulo p.

(o) - (), (), (), (3),

(25, 0), (), ()

(05 - (), (5).- (5),- (),

(), G, (5. - ().~ (.-
(.- ()
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Thus we will take our set of primes to be P = {—1,2,3,7,11,13,17,19,29}. Then we can
compute

ty = 41, t; = 43,41, = +4,t13 = £5,t17 = £1,t19 = £5, tgg = +£2.

Now for a range of values of x near y/n ~ 97 we factorise f(z) = #? —n. At this stage
we throw away the x which do not completely factor in our factor base.

T ) T3 Ty Ts Te X7 Ty Ty L10
x 81 84 85 89 95 97 98 100 101 103
f(x) —2926 | —2431 | —2262 | —1566 | —462 | —78 117 513 714 1122
—11]2926,1 | 2431,1 | 2262,1 | 1566,1 | 462,1 | 78,1 | 117,0 | 513,0 | 714,0 | 1122,0
2| 1463,1 | 2431,0 | 1131,1 783,1 | 231,1 | 39,1 | 117,0 | 513,0 | 357,1 061,1

3| 1463,0 | 2431,0 377,1 29,3 77,1 13,1 13,2 19,3 | 119,1 187,1

7 209.1 | 2431,0 377,0 29,0 11,1 | 13,0 13,0 19,0 17,1 187,0

11 19,1 2211 377,0 29,0 1,11 13,0 13,0 19,0 17,1 17,1
13 19,0 17,1 29,1 29,0 1,0 1,1 1,1 19,0 17,0 17,0
17 19,0 1,1 29,0 29,0 1,0 1,0 1,0 19,0 1,1 1,1
19 1,1 1,0 29,0 29,0 1,0 1,0 1,0 1,1 1,0 1,0
29 1,0 1,0 1,1 1,1 1,0 1,0 1,0 1,0 1,0 1,0

In the table above, in the column below each prime I have included the exponent of the
prime which occurs in the factorisation and the residual factor after that prime has been
factored out. It might also be handy to include a column beween the first and second
ones which contains the values of ¢, .

I have included one such value, x = 82, below, so that you can see what happens. If
n is proving awkward to factorise, one might go back and check to see if there are primes
outside the factor base which occur in multiple places and then add them to the factor
base. For example, f(92) and f(94) would completely factorise if we included the prime
31 in the factor base.

T 82 92 o4
F(z) | —2763 | —1023 | —651
—1 | 2763,1 | 2763,0 | 651,1
2 | 2763,0 | 1023,1 | 651,0
30 3072 341,1]217,1
7| 3070 | 341,0| 31,1
11| 307,0| 31,0 31,0
13| 307,0| 31,0| 310
17| 3070 | 31,0| 310
19| 307,0| 31,0| 310
29| 307,0| 31,0| 31,0
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Let v(z) denote the vector of exponents in the factorization of f(z), so that

v(85) = (1,1,1,0,0,1,0,0,1),
v(89) = (1,1,3,0,0,0,0,0,1),
v(98) = (0,0,2,0,0,1,0,0,0),

Then
v(85) + v(89) + v(98) = (2,2,6,0,0,2,0,0,2).

and the entries in this are all even. Thus

85% x 89? x 982 = (85% — n)(89% — n)(98% —n) (mod 9487)
741370% = (—1 x 2 x 3® x 13 x 29)% = 203587 (mod 9487).

Unfortunately

(741370 + 20358, 9487) = 1,
(741370 — 20358, 9487) = 9487.

We also have
v(81) +v(95) 4+ v(100) = (2,2,4,2,2,0,0,2,0),

so that
817 x 952 x 100 = (—1 x 2 x 3% x 7 x 11 x 19)* (mod 9487)

which gives
7695007 = 26334% (mod 9487)

and

(769500 + 26334, 9487) = 179,
(769500 — 26334, 9487) = 53.

There is a lot to take away from this.

1. We need to use the theory of quadratic residues, via the Legendre symbol and
quadratic reciprocity to see which primes to include in the factor base.

2. We then need to sieve out the z, i.e remove those x for which f(z) does not
completely factor in the factor base, and then to store the vector of exponents for each x
which survives. This can take a lot of memory.

3. Whilst not apparent in the simple example above, we will need to work hard to find
linear combinations of the vectors of exponents in which all the entries are even. This
will involve some form of Gaussian elimination. The complexity is somewhat reduced by
the fact that we only need to do this modulo 2, but it will still also require quite a lot of
memory.

Going back to the table
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T T2 T3 Ty Ts Tg X7 Ty L9 T10
x 81 84 85 89 95 97 98 100 101 103
f(x) —2926 | —2431 | —2262 | —1566 | —462 | —78 117 513 714 1122
112926,1 | 2431,1 | 2262,1 | 1566,1 | 462,1 | 78,1 | 117,0 | 513,0 | 714,0 | 1122,0
2| 1463,1 | 2431,0 | 1131,1 783,1 | 231,1 | 39,1 | 117,0 | 513,0 | 357,1 561,1
3] 1463,0 | 2431,0 | 377,1 29,3 77,11 13,1 13,2 19,3 | 119,1 187,1
71 209,1 | 2431,0 | 377,0 29,0 11,1 | 13,0 13,0 19,0 17,1 187,0
11 19,1 2211 377,0 29,0 1,11 13,0 13,0 19,0 17,1 17,1
13 19,0 17,1 29,1 29,0 1,0 1,1 1,1 19,0 17,0 17,0
17 19,0 1,1 29,0 29,0 1,0 1,0 1,0 19,0 1,1 1,1
19 1,1 1,0 29,0 29,0 1,0 1,0 1,0 1,1 1,0 1,0
29 1,0 1,0 1,1 1,1 1,0 1,0 1,0 1,0 1,0 1,0

we can extract the exponents of each prime thus

—_
—_
—_
—_

<

I
O OO R PR, ORFRRKF
OO, P, OOO
_— O O = OO = =
_ O OO OO W
OO OO =
OO O OO =
O OO, OO NOO
O=RH OO DO WwWo o
OO = O == = O
SO R O OFFO

Then we wish to find solutions to
Me =0 (mod 2).
other than 0. In other words we want the exponents in the prime factorisation of

f(flfl)el e f(l‘K)eK

to be even in a non-trivial way. The standard way of doing this is through Gaussian
elimination, and it suffices to perform it modulo 2. Below I have listed the successive row
operations, beginning with using the first row to eliminate the first entries in the other
rows, and then using successive rows to eliminate the entries in the column corresponding
to their leading entry.

1111110000 1111110000
1011110011 01 000O0O0O0OT1T71
00131123171 0011110111
1000100010 01110100120
110010O0O01T1], 00110100171
0110011000 0110011000
01 000O0O0O0CTT1 01 000O0O0O0T1T71
10000O0O01QO0O0 0111110100
001 100O0O0O0¢O0 001 100O0O0O00¢O0
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SO —H 4 O OO OO A
O A A4 4 OO OO
OO A A A 4O O —~
OO OO O H O OO
— O 4 O OO oo H
—_ O H A A H O O —
—N O — O O - O OO
—N O - O O OO OO
— O O OO oo o
— O O O O O o OO
OA A A - 4O O
O 4O A - O — O
SO —H O OO o —H O
O OO OO —H O oo
SO A A~ H O A O
—N O - O O O O~ O
—_ O A A~ O O A —
—. O A A~ O A —
— O O OO oo O
— O O O O O O oo

1111110000

01 0000O0O0T11

00111101171

000010O01T10

000O0O0OO0OOO0OT1OQO0

0001101100

000O0O0OO0OO0OO0OO0O0

000O0O0OO0OO0OO0OO00®O0

000O0O0OT1TO0O0®O01

It is then arranged into echelon form and the leading entries used successively to remove

any entries above

S —-H 4 O O H O OO
S OO oo o OO
OO 4 4 +H O O OO
SO O - OO o oo
— O 4 O O - O OO
O~ OO OO
— O A 4 OO o OO
— O - O O OO OO
— O OO OO OO
— O O O O OO OO
O = 4 O O - O OO
O+ = O+ O — O O
OO 4 +H O O OO
O OO H O OO OO
— O — O O O OO
—. O~ — OO
—. O —H OO OO
— o - O O OO oo
— - O O O OO oo
— O O O O o o oo

1111000101

1111100001

— O OO H O OO
O OO OO —H OO
O OO H O O OO
SO —H O OO oo
OO DO DO H O OO
OO —H O DO OO
O —-H 4 O O O OO
O —H O O OO oo
— O O OO o oo
O OO OO o oo
— O O O A O OO
O OO OO —H OO
O+ 4 4 O O OO
SO —H O OO oo
OO OO H O OO
SO = — O OO OO
O 4 O OO OO
O —H O O OO oo
— O O O O o oo
O OO OO o oo
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1110001101 1100000101
01 0000O0O0O0T1 01 0000O0O0O0O0T1
0010001000 0010001000
00010O01O0O00O0 00010O01O0O0O0
oooo0o1o0o010O0,{00001O0O01TO0¢O0
0000O0OT1O0O0O0T1 0000O0OT1O0O0O0T1
0000O0OO0OO0OO0DT1F® 0000O0O0OO0OO0ODT1F®
000O0O0O0OO0OGO OO 000O0O0O0OO0OOTO OO
0000O0O0OO0OO0OTO0O¢ 000O0O0O0OOO0OTO® O
10000O0O0OT1O0O0
01 000O0O0OO0CGO0O?1
00100O01O0O00O0
00010O01O0O00O0
00001O0O01O00O0
0000O0O1O0O0O0OT1
0000O0OO0OO0OO0OT1O
0000O0O0OO0OO0ODTO0© O
000O0O0O0OO0OO0ODTO 0@ O
Thus we find that
e +es=0 (mod 2),
es +e10=0 (mod 2),
es+e; =0 (mod 2),
es+e; =0 (mod 2),
es +es =0 (mod 2),
eg +e10=0 (mod 2),
g =0 (mod 2)

Thus taking e;, eg and ey as the independent variables we see that

(f(@s) f(@a) f(22)T (f(21) f(@s) f(25) ™ (f(22) f(x6) f (210)) "

is always a perfect square. The choices e; = 1,e5 = €19 = 0 and eg = 1,e; = e = 0
correspond to the solutions used above. The solution ey = 1,e7; = eg = 0 does not give
a factorization. The reader is welcome to explore other choices.

Here is another example with a somewhat larger n.

Example 8.2. Let n = 5479879 and take the sieving limit B = 50. We first need to
check which primes p < 50 will occur in the method. Thus for each odd prime p < 50 we
need to ascertain whether n is a QR or a QNR modulo p. Running the algorithm LJ we
obtain a factor base

P ={-1,2,3,5,11,31,47)}.
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We have \/n = 2340, but for larger numbers such as n it is harder to obtain complete
factorisations of f(x) = x*—n. Either the range for x has to be increased, or alternatively
extend the factor base P.

T i) XT3 Ty Ty T

T 2198 2225 2252 2373 2383 2477
f(z) | —648675 | —529254 | —408375 | 151250 | 198810 | 655650
—1 1 1 1 0 0 0
2 0 1 0 1 1 1

3 3 7 3 0 2 2

) 2 0 3 4 1 2

11 0 2 2 2 0 0
31 2 0 0 0 0 1
47 0 0 0 0 2 1

Now we extract the parity of the exponents for each prime and form the matrix

111000
010111
111000
M=1001010
000O0O0O
00 0O0O01
000O0O0°1

We now apply Gaussian elimination and obtain

<

Il
coococoo o
cCoocoo RO
coocoo~RoO
cCooc oo
cCoo o R RO
coor oo

Thus we find that

ert+es =0 ( )
€2+64+€5EO ( )
es+e; =0 (mod 2),
( )

6650
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Thus taking e4 and e5 as the independent variables we see that

e =es; (mod 2),
ea =es+es (mod 2),
e3 =e; (mod 2),
e =0 (mod 2),

and so each of

is a perfect square. We have
T1 X g X x4 = 2198 x 2225 x 2373 = 11605275150
and

() f(zo) f(mg) = (—1)?x22x 310 x50 x 11 x 312 = (2x 3% x 5° x 112 x 31)? = 227873250?

Now
11605275150 — 227873250 = 11377401900,
1105275150 4 227873250 = 11833148400,
(11377401900, n) = (11377401900, 5479879) = 5431
and

(11833148400, 5479879) = 10009.

We can also check to see what happens with the second relationship. We have
Ty X T3 X Tp = 2225 X 2252 x 2383 = 11940498100
and

fxa) fzs) fws) = (—1)* x 22 x 32 x5 x 11 x 47% = (2x 30 x 52 x 112 x 47)? = 207291150?

Then
11940498100 — 207291150 = 11733206950,
11940498100 + 207291150 = 12147789250,
(11733206950, 5479879) = 1009
and

(12147789250, 5479879) = 5431.
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8.3 Note on Gaussian Elimination
As part of the quadratic sieve we need to solve systems of linear congruences of the kind

ajiey + apes + -+ + apme, =0 (mod 2),

asi€y + agees + - -+ + agme, =0 (mod 2),
(8.4)

ape; + apes + -+ -+ aype, =0 (mod 2).

In our situation the a;; can be taken to be 1 or 0 which simplifies computation. When
n, the number to be factored, is large the matrices will be sparse, i.e. the majority of
the entries will be 0 and then there are more efficient methods than Gaussian elimina-
tion. However, for the purposes of the exposition in this chapter Gaussian elimination is
adequate, and has the merit of being straightforward.

We can write this more succinctly in matrix notation as

Ae=0
where
a1 a2 - Qim
21 A2z -+ Qam
A=
app Qi o Qi
and
€1
€2
e = .
em
and
0
0
0=1.
0

The first observation that can be made is that it is immaterial as to the order in which
we write the equations so at any state we can interchange them if it is convenient to do
so. Clearly if we have a row of zeros, then we can remove that row and make the matrix
smaller. Likewise if any column is all zeros we can remove that column and give any
value we like to the corresponding variable, that is treat it as a free variable. Thus we
can suppose initially that every column has a non-zero entry. We can then rearrange the
rows so that a;; = 1. This is sometimes called a pivot.
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Our second observation is that in (8.4]) we can take one equation and subtract it from
another. This is equivalent to taking the corresponding row in the matrix and subtracting
it from the second corresponding row. When Gaussian elimination is applied generally
in the real world one can even take real multiples of one row from another, but in this
world we have the much simple environment of having only zeros and ones. Note that if
subtraction gives —1 this is the same as 1.

We now take the first row and subtract it from every row with a;;, = 1. Thus the new
matrix will have a;; = 1 and all the entries below it 0.

Now consider the

1 aip -+ amm
0 ap -+ am
0

0 ap - am

If all the ajo with 2 < j <1 are 0, then we move on to the next column. If at least one of
the ajo is 1 we move that row to the second row and then subtract it from all the other
rows with aj2 = 1 and 7 > 2. We continue in this way until we have reduced the matrix
to echelon form

1 a2 a1z ax -+ aim
0 1 ag ag -+ agny
0 O 0 1 - as,
0 O 0 0 :

Note that the matrix might well have zeros on the diagonal from some point on. If so
some of the rows at the bottom of the matrix are likely to consist of all zeros.

The first 1 in a row is sometimes called a pivot. Starting from the bottom of the
matrix we now use these pivots to remove any non-zero entry above the pivot. Thus the
last matrix would take on the shape

1 0 a13 0 A1m
01 as3 0 A2m,
00 0 1 asm
0 0

0 O

This is called reduced echelon form.

What we see now is that if a;;, is a pivot, then the variable e; only occurs in the j-th
row, since all the entries above and below are 0. Thus e; is determined uniquely by the
other (non-pivot) variables, so can be considered as dependent variables. In other words
we can take the non-pivot variables, which can be considered independent variables, to
be anything we please (0 or 1) and the pivot variables will be determined by them.
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Thus in Example above we see that the reduced echelon form is

10000O0O01QO0O0
01 00O00O0O0O01
001 0O0O01O0O00O0
0001001O0O00O0
00001O0O01O0O0
000O0O0OT1TO0O0O01
000O0O0OO0OOO0OTO0
000O0O0OO0OOO0OO0O0
000O0O0O0OOO0OO0O0

and ey, es, €3, €4, €5, €5 and ey are dependent variables and the rest can be chosen at
random.

8.4 Notes

§1. The history of factorization methods related to searching for ¢, z,y with 2% — y? = tn
is complicated. Apart from Legendre in the eighteenth century there is F. W. Lawrence,
“Factorisation of numbers”, Messenger of Math., 24(1895), 100-109 and Kraitchik in the
1920s. Continued fraction expansions seemed to have been used explicitly first by D.
H. Lehmer and R. E. Powers, “On Factoring Large Numbers”, Bull. A. M. S. 37(1931),
770-776, but further developments had to await the widespread use of electronic com-
puters. For a further analysis of the continued fraction method see J. Brillhart and M. A.
Morrison, “A Method of Factoring and the Factorization of F;”, Mathematics of Com-
putation, 29(1975), 183-205. Lehman’s method described in §2.3] seems to have been
discovered independently and is similar ro Lawrence’s method listed above, and avoids
continued fraction expansions. As noted in §2.3|the theoretical underpinning can be made
to depend instead on Dirichlet’s theorem on diophantine approximation.

Schroeppel noticed, but did not publish, that the Brillhart-Morrison method had a
sub-exponential run time and that it could be improved by introducing sieving ideas in
place of continued fraction expansions. Then in 1981 J. D. Dixon, “Asymptotically fast
factorization of integers”, Math. Comp. 36 (153)(1981), 255-260 created the prototype
quadratic sieve using a factor base, and in 1982 Pomerance moulded it in to the form
which we examine here. See C. Pomerance, “A Tale of Two Sieves”, Notices of the AMS,
43(12)(1996), 1473-1485. It was also in the 1970s that Shanks explored in a different
direction. There is a full analysis of SQUFOF in J. E. Gowers and S. S. Wagstaff,
“Square Form Factorization”, Mathematics of Computation, 77(2008), 551-588. Just to
illustrate the long history of rediscovery in this area, apparently in 1858 V. Simerka had
used a method similar to SQUFOF to obtain the factorization

11111111111111111 = 2071723 x 5363222357

§2 The barbarism B-smooth is commonly used to mean B-factorable.
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Chapter 9

Arithmetical Functions

9.1 Introduction

A major consideration in assessing factorisation and primality testing algorithms is the
ability to judge and compare possible run times. Underpinning this is some knowledge
of the growth patterns of common arithmetic functions and a familiarity with the ba-
sic techniques used to elucidate the way in which primes are distributed under various
constraints.

It is convenient to make the following definition.

Definition 9.1. Let A denote the set of arithmetical functions, that is the functions
defined by
A={f:N—=C}.

Of course the range of any particular function might well be a subset of C, such as R
or Z. There are quite a number of important arithmetical functions. Some examples are

Definition 9.2 (The divisor function). The number of positive divisors of n.
dn) =) 1.
mln

Definition 9.3 (The Mdobius function). This is a more peculiar function. It is defined
by
B (—=1)* if n is a product of k distinct primes,
pln) = 0 if there is a prime p such that p*|n.

It is also convenient to introduce three very boring functions.

Definition 9.4 (The Unit).
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Definition 9.5 (The One).
1(n) =1 for every n.
Definition 9.6 (The Identity).
N(n) =n.

Two other functions which have interesting structures but which we will say less about
at this stage are

Definition 9.7 (The primitive character modulo 4). We define

=D 240,
xa(n) = {0 2|n.

Similar functions we have already met are Euler’s function ¢, the Legendre symbol
and its generalization the Jacobi symbol

(&)

m/

Here we think of it as a function of n, keeping m fixed, but we could also think of it as a
function of m keeping n fixed.

Definition 9.8 (Sums of two squares). We define r(n) to be the number of ways of
writing nas the sum of two squares of integers.

Example 9.1. For ezample, 1 = 0> 4+ (£1)? = (£1)2 4+ 0%, so r(1) = 4, r(3) = r(6) =
r(7) =0, 7(9) =4, 65 = (£1)* + (£8)? = (£4)? + (£7)? so r(65) = 16.

The functions d, ¢, e, 1, N, x1, (E)J have an important property. That is that they
are multiplicative. We already discussed this in connection with Euler’s function and the
Legendre and Jacobi symbols. Here is a reminder.

Definition 9.9. An arithmetical function f which is not identically 0 is multiplicative
when it satisfies

f(mn) = f(m)f(n) (9-1)

whenever (m,n) = 1. Let M denote the set of multiplicative functions. If holds for
all m and n, then we say that f is totally multiplicative.

The function r(n) is not multiplicative, since r(65) = 16 but r(5) = r(13) = 8. Indeed
the fact that (1) # 1 would contradict the next theorem. However it is true that r(n)/4
is multiplicative, but this is a little trickier to prove.

Theorem 9.1. Suppose that f € M. Then f(1) = 1.
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Proof. Since f is not identically 0 there is an n such that f(n) # 0. Hence f(n) =
f(nx1)= f(n)f(1), and the conclusion follows. O

It is pretty obvious that e, 1 and N are in M, and it is actually quite easy to show
Theorem 9.2. We have u € M.

Proof. Suppose that (m,n) = 1. If p*|mn, then p?|m or p*|n, so u(mn) = 0 = u(m)u(n).
If

m=pi...pr, N=p)...p
with the p;, p; distinct, then

plmn) = (=1 = (=1)*(=1)" = p(m)u(n).

The following is very useful.
Theorem 9.3. Suppose the f € M, g € M and h s defined for each n by

= f(m)g(n/m).

mln
Then h € M.

Proof. Suppose (ny,n2) = 1. Then a typical divisor m of nyns is uniquely of the form
myme with mq|n; and ms|ny. Hence

h(ning) = Z Z f(mama)g(ning/(mims))

mi|ny ma|n2

= Z f(my)g(ni/my) Z f(ma2)g(na/mo).

ml\nl mQ‘nZ

This enables us to establish an interesting property of the Mébius function.

Theorem 9.4. We have
> ulm) =

mln
Proof. By the definition of 1 the sum here is
5 (/)
mln
and so by the previous theorem it is in M. Moreover if £ > 1, then

> w(m) = p(1) +p(p) = 1—1=0

m|pk
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9.1.1 Exercises

1. Show that

2. (i) Show that

is 1 when (m,n) =1 and is 0 otherwise.
(ii) Prove that

(iii) Suppose that n > 2 and n has the distinct prime factors py, ps, ..., p,. Show that

6

S>> m? = o’ + (-1 Gmpip b
1

(m,n)=1

3. A squarefree number is one which has no square other than 1 dividing it. Let s(n)
denote the characteristic function of the squarefree numbers.
(i) Prove that

s(n) = 7 ulm)

m2|n
(ii) Prove that s(n) is multiplicative.

4. A positive integer n is perfect when o(n) = 2n.

(i) (Euclid) Prove that if 2¢+Y — 1 is prime, then 2/(2'*' — 1) is perfect.

(ii) (Euler) Suppose that n = 2'm, m odd, is an even perfect number. Prove that
o(m) = m + 51— Prove that m has exactly two positive divisors and so is prime, and

that m = 21 — 1.
(iii) Prove that there is no squarefree perfect number apart from 6.

5. Show that the only totally multiplicative function f for which - f(m) is totally
multiplicative is the unit e.

6. Prove that for every positive integer n,

> u(m)d(m) = (=1)“,
mln

where w(n) is the number of different prime factors of n, as defined in §7.5.
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7. Show that the sum of all the primitive roots modulo p lies in the residue class pu(p —1)
modulo p.

8. Let k € N. Prove that there are infinitely many n such that u(n + 1) = u(n +2) =

9. (i) Prove that there is an arithmetic function f such that for every natural number n

we have p(n) =3_ ., f(m).
(ii) Prove that f multiplicative, and give a formula for f(p*) when p is prime.

10. Show that every odd number n can be written as the difference of two squares,
n = x? — y?. How many different choices for the integers x and y are there?

11. Show that if n is a natural number, then

H m = nzd®,

mln

12. Suppose that f : N — Z is a totally multiplicative function with f(n) = 0 or £1.

Prove that
> fm) =0
mln

and
> f(m) > 1.
m|n2

13. (a) Prove that if z > 1, then

v 2] -1

n<x

Here |*] is defined in Definition .
(b) Prove that

“14+1/z<Yy =2 <1+1/z
n<x n
In fact we know that -
Z p(n) — 0,
n=1 n

but this is equivalent to the prime number theorem in the sense that if follows from the
prime number theorem and there is a relatively simple proof that it implies the prime
number theorem.

14.[Schneider| Suppose that |z| < 1. (i) Prove that
(k)

k
k=

1

X

log(1 — z*) = ] .
—x
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(ii) Prove that

— i": (k) log(1 — 2*) = .

(iii) Prove that if w = \/52_1, so that 1/w is the golden ratio, then

Z M log(1 — w*) = 1.

k=1

15. Prove that

S (1) 6n/m) = {0‘ "omedd,

_— (n even).

9.2 Dirichlet Convolution

labelsec:nine2
Theorem suggests a general way of defining new functions.

Definition 9.10. Given two arithmetical functions f and g we define the Dirichlet
convolution f x g to be the function defined by

(fxg)(n) =) f(m)g(n/m).

mln

Note that this operation is commutative because

frgln)=>_ f(m)g(n/m) =" g(n/m)f(m

and the mapping m < n/m is a bijection.
It is also quite easy to see that the relation is associative

(fxg)xh=fx(gxh).
To see this write the left hand side as
S rgmyny | bin/m)
mln llm

and interchange the order of summation and replace m by ki, so that kl|n, i.e l|n and
kln/l. Thus the above is

DS Y gkn((n/1)/k) =+ (g+h)(n).

lin k|n/l
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Dirichlet convolution has some interesting properties.

fxe=ex f=fforany f € A, so e is really acting as a unit.
wx1=1x%p=-e,so puis the inverse of 1, and wice versa.
Theorem [9.3] tells us that if f € M and g € M, then f x g € M.
Theorem says that ¢ x 1 = N.

d=1x%1,s0dée M. Hence

dp*) =k +1and d(p? ... pF) = (ky +1)... (k, +1).

SEEANE ol S

Theorem 9.5 (Mobius inversion I). Suppose that f € A and g = f+1. Then f = gx* p.

Proof. We have
grp=([*D)xp=[fxLxp)=fre=f
0

Theorem 9.6 (Md6bius inversion II). Suppose that g € A and f = g * u, then g = f * 1.

The proof is similar.
Theorem 9.7. We have ¢ = pu*x N and ¢ € M. Moreover

n)=mn m =n <1 — 1)
e

This gives new proofs of Corollary and Theorem

Proof. By property 4. and Theorem [9.5] we have
¢o=Nsxpu=puxN.

Therefore, by property 3 and Theorem [9.2) ¢ € M. Moreover ¢(p*) = p* — p*~! and we

are done. O
Theorem 9.8. Let D ={f € A: f(1) #0}. Then (D,%) is an abelian group.

Proof. Of course e is the unit, and closure is obvious. We already checked commutativity
and associativity. It remains, given f € D, to construct an inverse. Define g iteratively

by
9(1) =1/f(1)
g(n) = =>_ f(m)g(n/m)/f(1)

mln
m>1

and it is clear that fx g =e. O
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9.2.1 Exercises
1. We define o(n) for n € N to be the sum of the divisors of n,
S
mln

(i) Prove that o is a multiplicative function.
(ii) Evaluate ¢(1050).
(iii) Prove that

" é(m)o(n/m) = nd(n).

mln

(iv) Show that if o(n) is odd, then n is a square or twice a square.

(v) Prove that
Z p(m)o(n/m) = n.

mln

S wln/m) Y ubo(m/1) = d(n)

mln llm

(vi) Prove that

2. (cf Hille (1937)) Suppose that f(x) and F'(x) are complex-valued functions defined on

[1,00). Prove that
=Y fafn)

n<x

Z,u F(z/n)

n<x

for all x if and only if

for all z.

3. Show for each positive integer k that there is a unique arithmetic function ¢, such that
> Pr(M) = nk. Obtain a formula for ¢;(n) and show that ¢y (n) is multiplicative.

4. Evaluate h(n) =3_,,.(=1)" u(n/m).

5. Suppose that the arithmetical function n(n) satisfies >°_ n(m) = ¢(n). Show that
n(n) is multiplicative and evaluate n(p").

6. Let g(n) denote the number of ordered k-tuples of integers xq, s, ..., ) such that
1<z;<n(j=1,2...,k) and

(xlax%‘ . Jxk7n) = 17
and let G(n) = 3_, ., g(m). Prove that G(n) = n* and that

n):nkH(l—p_k

pn
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7. This question investigates whether there exists an arithmetic function 6 such that
0x0=pand@(1) > 0.
(1) Prove that 6 exists and is uniquely determined.

(ii) Prove that 1
004 = (-1* ;)

This is the coefficient of 2* in the Taylor expansion of (1 — 2z)'/? centred at 0. It is easily

checked that (28)! L /ok
ky _ o
W) =~ = _ﬁ(k>

(iii) By considering the function 61(n) = I, 0(p"*), or otherwise, show that 6 € M.

8. Let s € N. Generalise the results of question 7 to the situation f*6x*---x0 = p where
on the left one has the s-fold product.

9. Prove that

L (n=1),
YD) uln/m) =4 =2 (n=2),
min 0 (n>2).

9.3 Averages of Arithmetical Functions

One of the most powerful techniques we have is to take an average.

Example 9.2. Suppose we have an arithmetical function f and we would like to know
that is it often non-zero. If we could show, for example, that for each large X we have

> fn)? > ¢ X3
n<X

and
|f(n)] < X3 (n < X),

where C'y and Cy are positive constants, then it follows that
CLXP% <Y f(n)® < (CoX'P)? card{n < X : f(n) # 0}
n<X

and so
card{n < X : f(n) # 0} > C1C52X.

A more sophisticated version of this would be that if one could show that

Z (f(n) - an1/3)2 < C4X4/37

X<n<2X

then it would follow that for most n the function f(n) is about n'/3.
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This technique has been used to show that “almost all” even numbers are the sum of
two primes.

We are going to need some notation which avoids the continual use of C, Cy, .. ., etc.,
to denote unspecified constants.

Given functions f and g defined on some domain X with g(z) > 0 for all z € X we
write

f(z) = 0(g(z)) (9-2)

to mean that there is some constant C' such that

|f(@)] < Cg(x)

for every x € X. We also use
f(z) = o(g())

to mean that if there is some limiting operation, such as x — oo, then

f(x)
g(e) !
and
f(z) ~g(z)
to mean ( )
S(z)
o(2) — 1.

The symbol O was introduced by Bachmann in 1894, and the symbol o by Landau in
1909. The O-symbol can be a bit clumsy for complicated expressions and we will often
instead use the Vinogradov symbols, which I. M. Vinogradov introduced about 1934.
Thus we will use

f<yg (9.3)

to mean ({9.2)). This also has the advantage that we can write strings of inequalities in
the form

h<h<fzik. ...
Also if f is also non-negative we may use
g>f

to mean ((9.3)).
Our first theorem on averages concerns the function r(n) and is due to Gauss. The
proof illustrates a rather general principle.
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Theorem 9.9 (Gauss). Let X > 1 and G(X) denote the number of lattice points in
the disc centre 0 of radius VX, i.e. the number of ordered pairs of integers x,y with
22 +y?> < X. Then

n<X

and
G(X) =7X +O(X?).

Let
EX)=G(X)—-nX.

The question of the actual size of F(X) is one of the classic problems of analytic number
theory.

Proof. The first part of this is immediate from the definition of r(n).

To prove the second part we associate with each lattice point (z,y) the unit square
S(z,y) = [,z + 1) X [y,y + 1) and this gives a partition of the plane. The squares
with 22 + y?> < X are contained in the disc centred at 0 of radius VX +2 (apply
Pythagorus’s theorem). On the other hand their union contains the disc centered at 0 of
radius v/ X — /2. Moreover their area is G(X) and it lies between the areas of the two

discs, so
(VX —V2)? < G(X) < 1(VX +V2)?,
le.
X —m2V2VX +2 < G(X) < 71X + 72V2VX + 27,
Hence |G(X) — 7X| < m2v2VX + 31 < VX. O

The general principle involved in the above proof is that if one has some finite convex
region in the plane and one expands it homothetically, then the number of lattice points
in the region is approximately the area of the region with an error of order the length
of the boundary. Thus in the theorem above the unit disc centered at the origin has
its linear dimensions blown up by a factor of v/ X (its radius) and the number of lattice
points is approximately its area, 7X with an error of order the length of the boundary
27T\/y )

Before proceeding to look further at some of the arithmetical functions we have defined
above, consider the important sum

s(xX) =Y % (9.4)

n<X

where X > 1. This crops up in many places. We already saw it in Chapter 1 in Euler’s
proof of the infinitude of primes, Theorem [1.3] We observed that the sum S(X) behaves
a bit like the integral so is a bit like log X which tends to infinity with X. In fact there
is something more precise which one can say, which was discovered by Euler.
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Theorem 9.10 (Euler). When X > 1 the sum S(X) satisfies

1
S(X)=logX +Cy+ O (Y)

where Co = 0.577 ... is Euler’s constant

00_1—/ t_wdt
1

t2

where |x] is defined in Definition [1.5,

Proof. We have

n<X
Xdt Xt — |t X —X]|
[ n-f re-tx
it X - [X]
=log X —
og —i—Co—i-/X 2 dt e

]

Euler computed Cj to 19 decimal places (by hand of course). Actually that is not so
hard.

One of the more famous theorems concerning averages of arithmetical functions is

Theorem 9.11 (Dirichlet). Suppose that X € R and X > 2. Then

> d(n) = Xlog X + (2Co — 1)X + O(X'/?).

n<X

Let
A(X) =Y "d(n) — Xlog X — (2Co — 1)X.

n<X

As with the similar question for the Gauss lattice point problem one can ask “how does
A(X) really behave?”

Proof. The divisor function d(n) can be thought of as the number of ordered pairs of
positive integers m, [ such that ml{ = n. Thus when we sum over n < X we are just
counting the number of ordered pairs m,[ such that m{ < X. In other words we are
counting the number of lattice points m, [ under the rectangular hyperbola

ry = X.
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The method that Gauss employed for his lattice point problem fails here, because the
area under the rectangular hyperbola is infinite, and so is the boundary. Nevertheless the
number of lattice points under the curve is finite.

We follow Dirichlet’s ingenious proof method, which has become known as the method
of the hyperbola. We could just crudely count, given m < X, the number of choices for [,

namely
X
m

> %JFO(X)

m<X

and obtain

and then apply Euler’s estimate for S(X), but this gives a much weaker error term.
Dirichlet’s idea is to divide the region under the hyperbola into two parts. That with

X
m<vX,l<—
m
and that with

X
lgx/f,mgT

Clearly each region has the same number of lattice points. However the points m, [ with
m < v X and [ < v X are counted in both regions. Thus we obtain

;(d(n) =2 ZfﬁJ — VX2

X
—9 - 1/2

> — - X +0(X'?)

m<vX
= 2X (log(VX) + Cy) — X + O(X'/?).

where in the last line we used Euler’s estimate. [
One can also compute an average for Euler’s function

Theorem 9.12. Suppose that x € R and x > 2. Then

S om =5y A

We remark that the infinite series here is “well known” to be %.

)-

Proof. We have ¢ = o+ N. Thus

S o) =SS S ) S0

n<z nlz  min m<zx I<z/m
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We want a good approximation to the inner sum. This is just the sum of an arithmetic
progression of |z/m] terms with first term 1 and last term |x/m]. Thus the sum is

5Ll 0+ ) =3 () 0 (0)

Inserting this in the formula above gives

Zgb(n):%QZu?S:Z)—{—O(Z%).

n<x m<x m<x

The error term is < xlog z by Euler’s bound applied to the sum. The main term is

The error term here, by the monotonicity of the general term is

> d
<<x2/ —22/<<a:.
z Y

Collecting together our bounds gives the theorem. O

There is a curious application of this.

Theorem 9.13. The probability that two positive integers are coprime is %. In other

words

1 6
Pcard{m,n:m,ngx,(m,n) =1} — —3 45T — 00,

Proof. We have

2 om=3_ > 1

n<lzx n<z m<n
(m,n)=1

1
= écard{m,n:mgngx,(m,n) =1}

1 1
= §card{m,n:m,n§:p,(m,n) = 1}+§.

since if m > 1, then (m, m) =m > 1. Thus

1 1 2
Pcard{m,n:m,ngx,(m,n) =1} = —;—FEZW”)

n<x

and the result follows from the previous theorem. O
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9.3.1 Exercises

1. Prove that for any positive fixed real numbers C' and ¢ we have (logn)® < ne.

2. Suppose that f(z) is differentiable on [1, X] with a continuous derivative on [1, X].
(i) Prove that

> ) = X100 — [ L) v

n<X

:/1 f@)dt + f(1) = (X - LXJ)f(X)Jr/1 (t = [t])f/(t)dt.

(ii) Suppose further that f is differentiable on [1, 00) with a continuous derivative on

[1,00) and that
| i

S fn) = / ()t +C— (X — | X)) F(X) — / (t — 1) (1)t

n<X X

converges. Prove that

where

o=+ / Tt ) (0.

3. Prove that Y, _ 20 — %295 + O(log z) for x > 2.

n<x n

4. Let D(x) =3, ., d(n).
(i) Prove that
(ii) Prove that _

Z d(n) = %(loggc)2 + O(log ).

n
n<x

5. A number n € N is squarefree when it has no repeated prime factors. For X € R,
X > 1 let Q(X) denote the number of squarefree numbers not exceeding X.
(i) Prove that

Q(X) = %XJrO (VX).

(ii) Prove that if n € N, then
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(iii) Prove that
1 1 1 - 1 1
I N AT R T

(iv) Prove that Q(n) > n/2 for all n € N.
(v) Prove that every integer n > 1 is a sum of two squarefree numbers.

6. Let f(n) denote the number of solutions of #® +y* = n in natural numbers z,y. Show
that 1
Z f(n) = AX2/3 +0 (Xl/?)) where A = / (1 . 0[3)1/3d04.

0

n<X

Note that A = $B(4/3,1/3) = F(45//33))2 13%/21°(4/3)%. Here B(a, ) is the Beta function.

7. Show that the number N(X) of different natural numbers of the form 273° with r € N,
s € N and 2"3°% < X satisfies

(log X)?
2(log 2)(log 3)
as X — oo. Hint: Note that the condition 2"3° < X is equivalent to rlog2 4+ slog3 <
log X.

8. Let M (X) denote the number of ordered pairs (m,n) with m #n, m < X andn < X
such that ged(m,n) = 1. Prove that

N(X) = + O(log X)

)=2 Y é(n)= —X2+O(X10gX)
2<n<X

that is, the probability that two different integers chosen at random from [1, X]| are

. . 6
coprime 1s =2

9. Let Let
mi,ma,...,mg
mima...mp=n
Prove that

n<X

10. (i) Prove that d(mn) < d(m)d(n)
(ii) Prove that

Zd ? < x(logx).

n<x

(iii) Let k be a fixed positive integer. Prove that

Zd " < x(logx)? -1

n<x
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9.4 Orders of Magnitude of Arithmetical Functions.

It is sometimes useful to know something about the way that an arithmetical function
grows. Multiplicative functions tend to oscillate quite a bit in size. For example d(p) = 2
but if we take n to be the product of the first £ primes where k is large, then

d(n) = 2.

The function d(n) also arises in comparisons, for example in deciding the convergence of
certain important series. Thus it is useful to have a simple universal upper bound.

Theorem 9.14. Let € > 0. Then there is a positive number C which depends at most on
e such that for every n € N we have

d(n) < Cn°.
Note, such a statement is often written as
d(n) = O(n°)

or
d(n) <. n.

Proof. 1t suffices to prove the theorem when

< 1
£ .
~ log2

Write n = pi* ... pF where the p; are distinct. Recall that

dn)= (k1 +1)...(k+1).
Thus

e ckj
L

Since we are only interested in an upper bound the terms for which p$ > 2 can be thrown
away since 2¢ > k 4+ 1. However there are only < 2/¢ primes p; for which

p§<2.

Morever for any such prime we have
= exp(ek; log 2)
> 1+ ¢k;log2
> (k; + 1)elog2.
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Thus

The above can be refined.

Theorem 9.15. Let € > 0. Then for every n € N we have

(log2 +¢)logn
loglogn

d(n) < exp (

In Theorem |9.23| we will show that this is essentially best possible.

Proof. We may suppose that n is larger than some function of €. In (9.5) replace the ¢

of that inequality by
log2 + 5

loglogn

exp ((log2+ %) lognj)

log logn

The n® becomes

and the right hand side becomes

Joglogn_ loglogn 1—_</2 log logn
210g2+a/2 1 — 1 log2+¢/2 1
P ( °8 (log2+¢/2) logZ) P (( og ™) °8 (log2 4+ ¢/2)log 2
( elogn )
Lexp| —m | .

2loglogn

The product

(-5

or similar such objects, can arise in many contexts. Crudely,

(1—1/p)~' <2 =d(p) <d@p").

Thus
H(l_l) >L>>n*5
p) ~ d(n) '
pln
Thus |
nexp <—(log2 + 5)10;);027;”) < ¢(n) < n.

Later we will do much better than this.
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9.4.1 Exercises

1. Let

(i) Prove that dj, € M.
(ii) Prove that for any fixed € > 0 we have

dk(n) <«nt.

9.5 Euler and Primes

There is a function which we have already seen in Definition but we have only used
so far as a form of shorthand. This is the floor function. It is not an arithmetical function
- it is defined on R, not Z. There is a variant of this which is also useful.

Definition 9.11. Occasionally it is also useful to define the ceiling function [«] for
real numbers o as the smallest integer u such that o < u.

The difference a — |« is often called the fractional part of o and is sometimes

denoted by {a}.
Example 9.3. |7] =3, [7] =4, [V2]| =1, |-V2] = -2, [-V2] = —1.

Another related function which is very useful in some parts of number theory, although
we will not use it here is ||z||, the distance of x from a nearest integer,

|l = min |z — ] = min(z — 2], [] - 2).

We already explored the properties of the floor function in Theorem [1.10} Here is
another useful property. The floor function has some useful properties.

Theorem 9.16. For x € R define b(z) = |x] —2|x/2]. Then b(x) is periodic with period
2 and b(x) =0 when 0 <z <1 and 1 when 1 <z < 2.

Proof. For x € R define b(z) = |z| — 2|x/2]. Then b(x) is periodic with period 2 and
b(z) =0 when 0 <z <1and 1whenl<z<2.
The periodicity is easy, since for any k£ € Z we have
b(x +2k) = |z| + 2k — 2[(2/2) + k]

= x| + 2k —2[(z/2)| — 2k

= b(x).
Hence we only have to evaluate it when 0 < z < 2. It is pretty clear that b(z) = 0 when
0<z<land =1whenl<gz<2. O

Euler’s proof of Theorem is the beginning of the modern approach.
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9.6 Elementary Prime number theory

The strongest results we know about the distribution of primes use complex analytic
methods. However there are some very useful and basic results that can be established
elementarily. Many expositions of the results we are going to describe use nothing more
than properties of binomial coefficients, but it is good to start to get the flavour of more
sophisticated interpretations. We start by introducing

Definition 9.12 (The von Mangoldt function). This is defined by

0 ifn=1,
A(n) =<0 if pip2|n with py # pa,
logp if n ="

The support of A is the prime powers. The higher powers are quite rare, at most
O (y/x) of them not exceeding z, and so the function is mostly concentrated on the
primes themselves. This function is definitely not multiplicative, since A(1) = 0, but
nevertheless it has an interesting and useful relationship with a familiar function as a
consequence of the extension to prime powers.

Lemma 9.17. Letn € N. Then

Z A(m) = logn,

mln

Proof. Write n = p'fl ...p with the p; distinct. Then for a non-zero contribution to the
sum we have m = p’s for some s with 1 < s < r and j, with 1 < j, < ks. Thus the sum

1S
r ks

Z Z log ps = logn.

s=1 js=1

We need to know something about the average of logn.

Lemma 9.18 (Stirling). Suppose that X € R and X > 2. Then

Zlogn = X(log X — 1) + O(log X).

n<X

This can be thought of as the logarithm of Stirling’s formula for | X |!.
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Proof. We have

Zlogn: Z (1ogX—/nX %)
=|X| 1ogX—/1X %dt
~ X(log X — 1)+/X @dﬁoaog)().

1

O
Now we can say something about averages of the von Mangoldt function.
Theorem 9.19. Suppose that X € R and X > 2. Then
X
> A(m) {—J = X(log X — 1) + O(log X).
m<X m
Proof. The sum in question is
Y am Y1
m<X k<X/m

Collecting together the ordered pairs mk = n for a given n and rearranging gives

> D Am)

n<X km

km=n

and this is

>3 A

n<X mln
By the first lemma this is

Z logn
n<X
and by the second it is
X(log X — 1)+ O(log X).
O

At this stage it is necessary to introduce some of the fundamental counting functions
of prime number theory. For X > 0 we define

W(X) =) An),

n<X

I(X) =) logp,

p<X

m(X) = Zl.

p<X
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The following theorem shows the close relationship between these three functions.

Theorem 9.20. Suppose that X > 2. Then
DR
ZM Xl/k
X X
W(X):M—}-/ 19(2 dt,
2

log X tlog”t

I(X) :7T(X)logX—/2

Note that each of these functions are 0 when X < 2, so the sums are all finite.

Proof. By the definition of A we have
SO I SO
k p<Xx1i/k

Hence we have

S ) = 3 ) 300

k

Collecting together the terms for which kIl = m for a given m this becomes

>0 Yl

klm

We also have

0= St (o + [ i)

p<X
X
_ I(X) +/ ﬁ(tg i
log X o tlog“t

The final identity is similar.
dt
SYex-y [
p<X p<X
etcetera. O]

Now we come to a series of theorems which are still used frequently.
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Theorem 9.21 (Chebyshev). There are positive constants Cy and Cy such that for each
X € R with X > 2 we have

Proof. Recall the function
x
b(z) = |z] — 2 bJ

defined in Theorem for x € R. There we showed that b is periodic with period 2 and

Hence

_ g/\(n) EJ _ 2n<§X:/2A(n) LXT/QJ .

Here we used the fact that there is no contribution to the second sum when X/2 < n < X.
Now we apply Theorem and obtain for z > 4

X(log X — 1) —2% (logg - 1)) + O(log X) = X log2 + O(log X).

This establishes the first inequality of the theorem for all X > C for some positive
constant C'. Since (X)) > log2 for all X > 2 the conclusion follows if C; is small
enough.

We also have, for X > 4,

Y(X) —h(X/2) <> An)f(X/n)

n<X
and we have already seen that this is
Xlog2+ O(log X).
Hence for some positive constant C' we have, for all X > 0,
(X)) —(X/2) <COX.

Hence, for any k& > 0,
P(X27F) —yp(X27F ) < CXx27F

Summing over all k gives the desired upper bound. O
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We can now obtain the following.

Corollary 9.22 (Chebyshev). There are positive constants Cs, Cy, Cs, Cg such that for
every X > 2 we have

CgX <19(X) < O4X,

Cs X CsX
X )

log X ) < log X

Proof. The second result of Theorem [9.20] states that

i,u Xl/k:

k=1

Remember that the series is really finite because the terms are all 0 when X% < 2 i.e
k > (log X')/(log2). Thus by the previous theorem

log X

< CX'/?
log 2

Y(XVE)| < CoX'2 4 Co X3

for some constant C'. Thus
[9(X) —(X)| < CX'/?

and so by the previous theorem again
C1X —CXYV? < 9(X) < Cy+CXYV?2 < O X
with, say Cy = Cy + C. If we take 0 < C" < (4, then

C'X <O, X —CXV?

provided that X > Xo = ( 7= C,

to be the minimum of C’ and

. Since ¥(X) > log 2 whenever X > 2 we can take Cs

. I(X)
2sr§lsnxo X '

Now turn to 7(X). By the third formula in Theorem we have

0(X) /X 0(t)
X)= dt.
m(X) logX+ 5 tlog?t

Thus, at once

Y(X) Cs3X
> > .
m(X) = log X = log X
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The upper bound is more annoying. We have

X
< Cy X Cydt

X .
m(X) = log X o log*t

The integral here is bounded by

/ﬁ Oy dt /X Cdt OWX  40,X C'X
2

s < < .
(log2)?  Jyx (logvX)?  (log2)? = (log X)? ~log X

Chebychev’s theorem can be used to establish a companion to Theorem [9.15

Theorem 9.23. For every € > 0 there are infinitely many n such that

an) > exp ((log2 —e) logn) |

log logn

Proof. Let n =[] . p so that
logn = Y(X).

Then, by Chebyshev
X <logn < X

and so
log X ~ loglogn.
Moreover
d(n) = 2%,
whence

logd(n) = (log 2)m(X)

145

]

It is also possible to establish a more precise version of Euler’s result on the primes.
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Theorem 9.24 (Mertens). There is a constant B and a positive constant ¢ such that

whenever X > 2 we have

~—

A
T” —log X + O(1),

X
1
98P _1og X + O(1),
p<X p
1
Z—zloglogX—i—B—i—O ,
P log X
p<X

1 c 1
TR (—) .
pll ( p) log X (log X)?
Proof. By Theorem [9.19| we have
ZA L J X(log X — 1)+ O(log X).
m<X

The left hand side is

Xy W +O(1(X)).

m<X

Hence by Cheyshev’s theorem we have
A(m)
X ——— = Xlog X X).
méX - og X + O(X)

Dividing by X gives the first result.

We also have |
0
PDELED >

m<X k pk<X

The terms with & > 2 contribute

lo >, logn
DDV W

p k>2

which is convergent, and this gives the second expression.
Finally we can see that

log p
Z Z (logX tlog? t)

p<X p<X

logp / logp dt
logXZ Z p tlog’t’

p<t

(9.6)

(9.7)

(9.8)

(9.9)
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Let

1
E(t) = Z O}g)p —logt

p<t

so that by the second part of the theorem we have F(t) < 1. Then the above is

log X + E(X) /X logt—{—E(t)dt
 logX 5 tlog*t

< B(t
:loglogX+1—loglog2+/ (2) dt
2 tlog t

LGSRy OB

log X x ¢ log2 t

The first integral here converges and the last two terms are

< log X~

For the final assertion of the theorem observe that

s (1 - _> ka
and so

logn(l——)—z FB- XS

p<X pgx p>X k=2

where

)

pk2

which converges absolutely since
Sy
— kph = L pk -1

The other series is bounded by

Hence, by the third part of the theorem,

1
logH (1— —) loglog X + By + O (1 gX)

p<X

for some real constant By. Exponentiating both sides gives the desired conclusion.

147
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There are several interesting applications of the above which lead to some important
developments.
Theorem 9.25. Suppose that n > 3. Let ¢ be the constant of Theorem [9.24 Then

M)t ol
p) ~ loglogn (loglogn)?

pln

and

cn n
loglogn +0 <(loglogn)2> <o) <n

Proof. Suppose that n has k different prime factors and p; denotes the j-th prime in
order of magnitude. Then

1(-5)=100-5)-1(-})

p|n
c 1
—t O — .
log pi ( (log px)? )

n > Hpj = exp (V(pr)).

Jj<k

By Theorem this is

Moreover

Hence logn > 9¥(px) and so by Chebyshev’s theorem p, < logn. Hence logp, <

loglogn + O(1) and the conclusions follow.
]

9.6.1 Exercises

1. Let P(Y) = [[,<y p- Prove that if X > 1, then

2. When X > 1 let

(i) Prove that
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(ii) Prove that

1 1
1+ —=<TX)< — +1.
+X_()_X+

Actually T(X) — 0 as X — oo, but this is non-trivial, and can be proved by the same
methods as those used to prove the prime number theorem.
3. Suppose that m € N, a,b € Z and (a,m) = 1. Prove that

Zm: ar+b far+b] 1) 1

— m m 2) 2

4. Let A(x) = |z| — |z/2] — |z/3] — |z/6].

(i) Prove that A(x) is periodic with period 6 and

0 xz€]0,1),
Alx) =<1 =z €ell,b),
2 x€[56).

ZA A(z/m).

m<x

Prove that if x > 6, then S(z) = cx 4+ O(log x) where

(ii) Let

1 1
—log 3 + 610g6 =1.01140....

1
~ “1log?
510827 3

(iii) Prove that if x > 0, then
U(x) +9(2/5) = 2¢(x/6) < S(x) < (x) +¢(z/5).
(iv) Prove that if x > 2, then

w@yg%x+omgxy

5. For x > 0 define B(x) = |z| — |z/2] — |z/3] — |z/5] + |x/30].
(i) Prove that B(z) is periodic with period 30,

.

o
8
m

),
1Hm
€ [12,13),
€ [13,15)

—_ O = O = O
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and that if 0 < x < 15, then B(z + 15) = B(z) + |z/2] — [ (z + 1)/2]. Deduce that
0 < B(x )<1f0rall$

(ii) Let T'(x ZA B(x/m). Prove that B(z) = ¢z + O(logz) where ¢ =

m<x
Liog2t 11 3+11 5 110030 = 0.0212
— 10 — 10 — 10 — — 10 = U.
9 084 T 308 S 080 T 55108

(iii) Prove that ¢(z) — ¢(x/6) < T(x) < ¢(z).
(iv) Prove that if > 2, then

/

dx+ O(logz) < ¢(x) < %jx + O(log® z).

Remark: 6¢//5 = 1.1054. . ..
6. (i) Prove that if z > 1, then

/ “p(u)
o u?
ii) Prove that limsup,_, @ > 1 and liminf, ., 22 < 1.

( v
(iii) Prove that if there is a constant ¢ such that ¢ (z) ~ cx as x — oo, then ¢ = 1.
(iv) Prove that if there is a constant c such that 7(z) ~ ¢

=logz + O(1).

7. (i) Let d,, = lem|[1,2,...,n]. Show that d,, = e‘” n),

(ii) Let P € Z[x], deg P < n. Put [ = I(P fo z) dz. Show that Id, ; € Z, and
hence that d,,.1 > 1/|I] if I # 0.

(iii) Show that there is a polynomial P as above so that Id,;; = 1.

(iv) Verify that maxo<,<; [22(1 — z)? (2x —1)| =552

(v) For P(z) = (2*(1 — 2)*(2z — 1)) 2" Verify that 0 < [ < 575",

(vi) Show that ¥ (10n + 1) > (3 log5) - 10n.

9.7 The Normal Number of Prime Factors

As a companion to the definition of a multiplicative function we have

Definition 9.13. An f € A is additive when it satisfies f(mn) = f(m)+ f(n) whenever
(m,n) =1.

Now we introduce two further functions.

Definition 9.14. We define w(n) to be the number of different prime factors of n and
Q(n) to be the total number of prime factors of n.

Example 9.4. We have 360 = 23325 so that w(360) = 3 and Q(360) = 6. Generally,
when the p; are distinct, w(py' ... pfr) =r and QPN ... pF) =k + - + k..
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One might expect that most of the time €2 is appreciably bigger than w, but in fact
this is not so. By the way, there is some connection with the divisor function. It is not
hard to show that

24(0) < d(n) < 29M),

In fact this is a simple consequence of the chain of inequalities
2<k+1<28

Theorem 9.26. Suppose that X > 2. Then

X
Zw(n):XloglogX+BX+O< )
= log X

where B is the constant of Theorem and

ZQ( XloglogX+<B+Z—1)>X+O(IO§X).

n<X

Proof. We have

and the result follows by combining Corollary and of Theorem [9.24]
The case of € is similar. We have

dam)=x Y ]%+O > w(xth

n<X p,k k<(log X)/(log 2)

When k > 2 the terms in the error are < X2 and so the total contribution from the
k> 2is < XY?log X. In the main term, when k£ > 2 it remains to understand the

behaviour of
Z Z Z _+Z X1/kk/2z I<:/2

k>2 p>X1/k p>X1/2 k>3

The first sum is < X ~%/2 and the second is

1
< X2 E - < X2
12 _
~ p(p 1)
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Hardy and Ramanujan made the remarkable discovery that loglogn is not just the
average of w(n), but is its normal order. Later Turén found a simple proof of this.

Theorem 9.27 (Hardy & Ramanujan). Suppose that X > 2. Then

5 (sn-$ 1) «xx )

p<X p

n<X p<X
Z (w(n) —loglog X)* < X loglog X
n<X

and

Z (w(n) —loglogn)® < X loglog X.

2<n<X

This theorem says that the normal number of prime factors of n is loglogn.

Proof. (Turén). By (9.8), we have

2
Z (Z E —loglogX) <X

n<X \p<X
and, since for VX <n < X, we have
0 <loglog X — loglogn < loglog X — loglog VX
=log X — logélogX
= log 2,
it follows that
Z (loglog X —loglogn)? < v X (loglog X)? Z 1

2<n<X VXn<X

< X.

Thus it suffices to prove the second statement in the theorem. We have

D=2 > > 1

n<X n<X pi|n p2|n

22 LWJ :&%J

P1sS <X pP2s <X
DP2F£P1

pa#p1

< X(loglog X)* + O(X loglog X)
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by . Hence, by
Z(w(n) —loglog X)? < 2X (loglog X)? — 2(loglog X) Z w(n) + O(X loglog X)

n<X n<X

and this is < X loglog X. ]

One way of interpreting this theorem is to think of it probabilistically. It is saying
that the events p|n are approximately independent and occur with probability %. Thus
we can think of w(n) as being a sum of independent random variables, and so the cental
limit theorem should apply. That is, one might guess that the distribution is normal.
This indeed is true and was established by Erdos and Kac in 1940. Let

1 — log1
(I’(a, b) = lim —card{n <z:a< w(”) oglogn

< b},
s Joabzn =

Then
1

b
@(a,b) = E/ €_t2/2dt.

This lead to a whole new subject, Probabilistic Number Theory.

9.7.1 Exercises

1. Let A(n) = (—=1)% (Liouville’s function). Prove that

A(n) = Z p (n/m?).

m2|n

2. Prove that Q(n) < %.

3. Let y be any real number with y > 1.

(i) By considering the prime divisors p of n with p > ¥y, or otherwise, prove that
My < e,
logn

logy

(i) Prove that f(z) = 2z2 — logx is an increasing function of z for z > 1. Deduce
that if n > 3, then

w(n) <y+

21
(logn)% < 2080

loglogn’

(iii) Prove that if n > 3, then w(n) < 1§gk1)§gnn'
4. Suppose that X > 2. Prove that

5 (a5 1) <xxh

n<X p<X p<X
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Z (Q(n) — loglog X)* < X loglog X

and

Z (Q(n) — loglogn)®.

2<n<X

5. Let € > 0. Prove that the set E(X) of n < X for which
(logn)°8*¢ < d(n) < (logn)e*e

does not hold satisfies card E(X) < ﬁ.
This reveals the curious fact that whereas the average value of d(n) is logn, d(n) is
normally smaller, about (logn)°¢2. The reason is that the average is dominated by the

exceptionally large values of d(n).

9.8 Primes in arithmetic progressions

We finish the chapter by developing the ultimate version of Euclid’s proof that there are
infinitely many primes. Let k € N and let ®;(z) denote the k-th cyclotomic polynomial.

I -

(k,k)=1

where
o = eQTri/k.
Thus &, is the monic polynomial whose roots are the primitive k-th roots of unity and

its degree is Euler’s function ¢(k). Note that ®,(z) is a (polynomial) factor of z* — 1.
We can use the Mébius function to remove the condition that (I, k) = 1. Thus

k

Dr(z) = H(z - wl)zml(z,kw(m)
=1

STTIT G- =

I1=1 m|(1,k)

oJm w(m)

I (T =)

m|k \n=1

Therefore

Oy (z) = [J (2™ — nyrem). (9.10)

mlk
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Example 9.5. The cases k =4 and 6 are

By(2) = (2 —i)(z+i) = 241 ;:1
and
(26 —1)(z—1)

o(2) =(z-w)(z @) =2" -2+ 1= (3 —1)(z2=1)

For any prime p
Dp(2) =24 P4z L

We can use ({9.10]) to prove that the cyclotomic polynomials have integer coefficients.

Theorem 9.28. The k-th cyclotomic polynomial has integer coefficients.

Proof. By the formula (9.10)), when |z| < 1, we have

2 0P(1/2) = H(1 — pk/myu(m)

mlk
_ H (1 _ Zk/m) H (1 —l—Zk/m +22k/m +. )
p(m)=1 p(m)=-1

]

We have a finite product of absolutely convergent series with integer coefficients whose
product is a polynomial. Collecting together terms shows that ®j(z) has integer coeffi-
cients.

The constant term of ®(z) is

II ==Y

=1
(1,k)=1
which has modulus 1. Thus it is +1.

We can use these polynomials to show that given any k € N there are infinitely many

primes of the form kx + 1.

Theorem 9.29. Suppose that k € N. Then there are infinitely many primes of the form
kx + 1.

Proof. Suppose that r € N, r > 1 and p is a prime with p{ k and p|®;(r). Then p|r* —1
and p tr. Thus e = ord, r|k, and if m|k and p|r™ — 1, then elm. Write 7 = 1 + up" for
some positive integers v and v with p t u. Then

rt — 1= (1 +up) —1=lup® (mod p*).
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Thus if I|k, so that p{ [, p? is the exact power of p dividing r® — 1. Thus the exact power
of p dividing ®(r) is
H(pv)u(m) = p¥ 2w /en((k/)/1)

m|k
elm

and the exponent is 0 unless e = k. Thus we have shown that if p { k and p|®x(r), then
r has order k¥ modulo p. Thus k = ord p(r)|p — 1.

Now suppose there are only a finite number of primes py, ..., p; in the residue class 1
modulo k and let » = kyp; ... p; where y is chosen to ensure that ®;(r) > 1. Then there
is at least one prime with p|®x(r) and from above p =1 (mod k). Thus p|r also. Hence
p divides the constant term of ®(z) = £1 which is absurd. O

9.8.1 Exercises

1. Prove that if p is a prime, then

Dy (2P) k
@pl{;(z) — { ‘bk(z) (p'f )’

®i(2)  (plk).
2. Prove that if 2t k, j > 1 and k > 1, then
B, = Dy — 227).

3. Prove that if & > 1, then ®4(0) = 1.
4. (i) Prove that if k is the product of at most two distinct primes, then the coefficients
of &4 (z) are +1 or 0.

(ii) Prove that the coefficient of 27 in ®y5(2) is —2.
5. Prove that ®;(1) = e**) where A is the von Mangoldt function.

6. (i) Suppose that 2|z, p is prime and p|z? + 1. Show that 8|p — 1.
(ii) Suppose that z = 3 (mod 41?). Show that 41 divides z* + 1, but 41? does not.
Hence show that there are infinitely many primes p =9 (mod 16).

7. By considering the polynomial 2> — 5 show that there are infinitely many primes p
satisfying p = —1 (mod 5).

9.9 Notes

§1. Mobius discovered Mobius inversion in 1832. The exercise 9.2.1.2 is in E. Hille (1937).
The inversion problem of Mobius, Duke Math. J. 3, 549-568.

§3. As in the remark after Gauss’ Theorem let £(X) = G(X) —nX. The
best bound we have for F(X) is in Huxley 2002, “Integer points, exponential sums and
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the Riemann zeta function”, Number theory for the millennium, II (Urbana, IL, 2000)
pp.275-290, pub. A K Peters, where it is shown that

E(X) = 0(X")

for any 6 > 222 We also know (Hardy and Landau, independently [1915]) that one cannot
take 0 < 1.

Euler investigated S(X) and Cj in 1735. Sometimes 7 is used to denote Cyy (Mascher-
oni 1790).

Theorem occurs in J.P.G.L. Dirichlet (1849) “Uber die Bestimmung der mittleren
Werte in der Zahlentheorie,” Abh. Akad. Wiss. Berlin,2, 49-66. A huge amount of work

has gone into bounding A(X). Suppose that 6 is such that
A(X) < X°

for every X > 1. Then the current world record is that this holds for any 6 > 131/416 =
0.31490--- and is in M. N. Huxley (2003), “Exponential sums and lattice points III”,
Proc. London Math. Soc. 87 (3), 591-609. In the other direction Hardy [1916] proved
that one cannot take 6 < %.

Theorem [9.12] or rather the exercise 9.3.1.8 is sometimes known as the primitive
lattice point problem. The error term is connected with the Riemann Hypothesis.

Apropos Exercise 9.3.1.10, Ramanujan (1916) “Some formulee in the analytic theory
of numbers”, Messenger of Mathematics, 45, 81-84, formula (3), states that

1
Z d(n)? = Fm(log 2)? + Bx(log2)* + Cxlogx + Dx + O(z?)

n<x

holds for certain constants B, C' and D and for any ¢ > 3/5.

§6. Chebyshev established Theorems and in P. L. Chebyshev (1848, 1850),
“Sur la fonction qui détermine la totalité des nombres premiers inférieurs a une limite
donné”, Mem. Acad. Sci. St. Petersburg 6, 1-19 and “Mémoire sur nombres premiers”,
Mem. Acad. Sci. St. Petersburg 7, 17-33. The various parts of Theorem [9.24] appeared
in F. Mertens (both 1874), “Uber einige asymptotische Gesetze der Zahlentheorie”, J.
Reine Angew. Math. 77, 289-338 and “Ein Beitrag zur analytischen Zahlentheorie, J.
Reine Angew. Math. 78, 46-62. Exercise 9.6.1.5 appeared in “Mémoire sur les nombres
premier”, Journal de Mathématiques Pures et Appliquées, 17(1852), 366-390.

§7. Theorem 9.26 is in G. H. Hardy & S. Ramanujan (1920) “The normal order of
prime factors of a number n”, Quart. J. Math. 48, 76-92 and the proof we give is in
P. Turan (1934) “On a theorem of Hardy and Ramanujan”, J. London Math. Soc. 9,
274-276. The Erdés-Kac theorem is in P. Erdds & M. Kac (1940). “The Gaussian Law
of Errors in the Theory of Additive Number Theoretic Functions”, American Journal of
Mathematics. 62 (1/4), 738-742.

§8. Theorem was first proved by Legendre in 1830. Curiously there seems to
be no way of developing these ideas further to establish that a general reduced residue
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class contains infinitely many primes. Dirichlet’ s proof of this instead is essentially
analytic and can be considered the ultimate version of Euler’s proof. However there are
connections between Dirchlet’s proof and algebraic number theory, especially the zeta
function associated with a ring of integers.

Exercise 4 was first noticed by A. Migotti, “Aur Theorie der Kreisteilungsgleichung”,
7. B. der Math.-Naturwiss, Classe der Kaiserlichen Akademie der Wissenschaften, Wien,
87, 7-14 (1883). In spite of initial appearances to the contrary the coefficients can get
surprisingly large. Let A(k) denote the absolute value of the largest coefficient of ®y(z).
Schur in a letter to Landau in 1935 showed that the sequence A(k) is unbounded, and
following work of P. Erdds, “On the coefficients of the cyclotomic polynomials”, Bull.
Amer. Math. Soc., 52, 179-181, (1946) and “On the coefficients of the cyclotomic poly-
nomials”, Portugal. Math. 8, 63-71 (1949), it was shown in R. C. Vaughan, “Bounds for
the coefficients of cyclotomic polynomials”, Michigan Math. J. 21, 289-295 (1975) that
there are arbitrarily large n such that

A(n) > exp (exp <(10g Q)bi)>

log logn

and that this is essentially best possible.
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